Unit 2

Classes and Structs
Contents of Classes or Structs

class C {

... fields, constants... // for object-oriented programming

... methods...

... constructors, destructors...

... properties...// for component-based programming

... events...

... indexers...// for amenity

... overloaded operators...

... nested types (classes, interfaces, structs, enums, delegates)...

}
Classesclass Stack {int[] values;int top= 0;public Stack(int size) { ... }public void Push(int x) {...}public int Pop() {...}}•Objects are allocated on the heap (classes are reference types)•Objects must be created with newStack s = new Stack(100);•Classes can inherit from oneother class (single code inheritance)•Classes can implement multiple interfaces (multiple type inheritance)
Structsstruct Point {int x, y;public Point(int x, int y) { this.x = x; this.y = y; }public MoveTo(int x, int y) {...}}•Objects are allocated on the stacknot on the heap (structs are value types)+efficient, low memory consumption, no burden for the garbage collector.-live only as long as their container (not suitable for dynamic data structures)•Can be allocated with newPoint p; // fields of p are not yet initializedPoint q = new Point();•Fields must not be initialized at their declarationstruct Point {int x = 0;// compilation error}•Parameterless construcors cannot be declared•Can neither inherit nor be inherited, but can implement interfaces
Visibility Modifiers (excerpt)

publicvisible where the declaring namespace is known

-Members of interfaces and enumerations are public by default.

-Types in a namespace (classes, structs, interfaces, enums, delegates)

have default visibility internal(visible in the declaring assembly)

privateonly visible in declaring class or struct

-Members of classes and structs are private by default

(fields, methods, properties, ..., nested types)

Example

publicclass Stack {

privateint[] val;// private is also default

privateint top;// private is also default

publicStack() {...}

publicvoid Push(int x) {...}

publicint Pop() {...}

}
Fields and Constantsclass C {int value = 0;Field-Initialization is optional-Initialization must not access other fields or methodsof the same type-Fields of a struct must not be initializedconstlong size = ((long)int.MaxValue + 1) / 4;Constant-Value must be computable at compile timereadonlyDateTime date;Read Only Field-Must be initialized in their declaration or in a constructor-Value needs not be computable at compile time-Consumes a memory location (like a field)}Access within CAccess from other classes... value ... size ... date ...C c = new C();... c.value ... c.size ... c.date ...
Static Fields and ConstantsBelong to a class, not to an objectclass Rectangle {staticColor defaultColor;// once per classstaticreadonlyint scale;// --" –// static constants are not allowedint x, y, width,height;// once per object...}Access within the classAccess from other classes... defaultColor ... scale Rectangle.defaultColor ... Rectangle.scale ...
MethodsExamplesclass C {int sum = 0, n = 0;publicvoid Add (int x) {// proceduresum = sum + x; n++;}publicfloat Mean() {// function (must return a value)return (float)sum / n;}}Access within the classAccess from other classesthis.Add(3);C c = new C();float x = Mean();c.Add(3);float x = c.Mean();
Static MethodsOperations on class data (static fields)class Rectangle {static Color defaultColor;public staticvoid ResetColor() {defaultColor = Color.white;}}Access within the classAccess from other classesResetColor();Rectangle.ResetColor();
Parameters

-"call by value"

-formal parameter is a copy of the

actual parameter

-actual parameter is an expression

Value Parameters(input values)

void Inc(int x) {x = x + 1;}

void f() {

int val = 3;

Inc(val); // val == 3

}

ref Parameters(transition values)

void Inc(refint x) { x = x + 1; }

void f() {

int val = 3;

Inc(refval); // val == 4

}

out Parameters(output values)

void Read (outint first, outint next) {

first = Console.Read(); next = Console.Read();

}

void f() {

int first, next;

Read(outfirst, outnext);

}

-"call by reference"

-formal parameter is an alias for the

actual parameter

(address of actual parameter is passed)

-actual parameter must be a variable

-similar to ref parameters

but no value is passed by the caller.

-must not be used in the method before

it got a value.
Variable Number of ParametersLast n parameters may be a sequence of values of a certain type.void Add (out int sum, paramsint[]val) {sum = 0;foreach (int i in val) sum = sum + i;}paramscannot be used for refand outparametersUseAdd(out sum, 3, 5, 2, 9); // sum == 19keywordparamsarray type
Method OverloadingMethods of a class may have the same name-if they have different numbers of parameters, or-if they have different parameter types, or-if they have different parameter kinds (value, ref/out)Examplesvoid F (int x) {...}void F (char x) {...}void F (int x, long y) {...}void F (long x, int y) {...}void F (ref int x) {...}Callsint i; long n; short s;F(i);// F(int x)F('a');// F(char x)F(i, n);// F(int x, long y)F(n, s);// F(long x, int y);F(i, s);// cannot distinguish F(int x, long y) and F(long x, int y); => compilation errorF(i, i);// cannot distinguish F(int x, long y) and F(long x, int y); => compilation errorOverloaded methods must not differ only in their function types,in the presence of paramsor in refversus out!
Constructors for ClassesExampleclass Rectangle {int x, y, width, height;public Rectangle (int x, int y, int w, int h){this.x = x; this.y = y; width = x; height = h; }public Rectangle (int w, int h): this(0, 0, w, h){}public Rectangle (): this(0, 0, 0, 0){}...}Rectangle r1 = new Rectangle();Rectangle r2 = new Rectangle(2, 5);Rectangle r3 = new Rectangle(2, 2, 10, 5);•Constructors can be overloaded.•A construcor may call another constructor with this(specified in the constructor head, not in its body as in Java!).•Before a construcor is called, fields are possibly initialized.
Default ConstructorIf no constructor was declared in a class, the compiler generates a parameterless default constructor:class C { int x; }C c = new C();// okThe default constructor initializes all fields as follows:numeric0enum0boolfalsechar'\0'referencenullIf a constructor was declared, nodefault constructor is generated:class C {int x;public C(int y) { x = y; }}C c1 = new C(); // compilation errorC c2 = new C(3);// ok
Constructors for StructsExamplestruct Complex {double re, im;public Complex(double re, double im){ this.re = re; this.im = im; }public Complex(double re): this (re, 0){}...}Complex c0;// c0.re and c0.im are still uninitializedComplex c1 = new Complex();// c1.re == 0, c1.im == 0Complex c2 = new Complex(5);// c2.re == 5, c2.im == 0Complex c3 = new Complex(10, 3);// c3.re == 10, c3.im == 3•For everystruct the compiler generates a parameterless default constructor(even if there are other constructors).The default constructor zeroes all fields.•Programmers must not declare a parameterless constructor for structs (for implementation reasons of the CLR).
Static ConstructorsBoth for classes and for structsclass Rectangle {...static Rectangle(){Console.WriteLine("Rectangle initialized");}}struct Point {...static Point(){Console.WriteLine("Point initialized");}}•Must be parameterless(also for structs) and have nopublicor privatemodifier.•There must be just onestatic constructor per class/struct.•Is invoked oncebefore this type is used for the first time.
Destructorsclass Test {~Test() {... finalization work ...// automatically calls the destructor of the base class}}•Correspond to finalizers in Java.•Called for an object before it is removed by the garbage collector.•No publicor private.•Is dangerous (object resurrection) and should be avoided.
PropertiesSyntactic sugar for get/set methodsclass Data {FileStream s;public stringFileName {set{s = new FileStream(value, FileMode.Create);}get{return s.Name;}}}Used as "smart fields"Data d = new Data();d.FileName= "myFile.txt";// invokes set("myFile.txt")string s = d.FileName;// invokes get()JIT compilers often inline get/set methods 􀃎no efficiency penaltyproperty typeproperty name"input parameter"of the set method
Properties (continued)get or set can be omittedclass Account {long balance;public long Balance {get { return balance; }}}x = account.Balance;// okaccount.Balance= ...;// compilation errorWhy are properties a good idea?•Interface and implementation of data may differ.•Allows read-only and write-only fields.•Can validate a field when it is assigned.•Substitute for fields in interfaces.
IndexersProgrammable operator for indexing a collectionclass File {FileStream s;public intthis[int index] {get {s.Seek(index, SeekOrigin.Begin);return s.ReadByte();}set {s.Seek(index, SeekOrigin.Begin);s.WriteByte((byte)value);}}}UseFile f = ...;int x = f[10];// calls f.get(10)f[10]= 'A';// calls f.set(10, 'A')•get or set method can be omitted (write-only / read-only)•Indexers can be overloaded with different index typestype and nameof the index valuename(always this)type of theindexed expression
Indexers (other example)class MonthlySales {int[] product1 = new int[12];int[] product2 = new int[12];...public int this[int i] {// set method omitted => read-onlyget { return product1[i-1] + product2[i-1]; }}public int this[string month] { // overloaded read-only indexerget {switch (month) {case "Jan": return product1[0] + product2[0];case "Feb": return product1[1] + product2[1];...}}}}MonthlySales sales = new MonthlySales();...Console.WriteLine(sales[1]+ sales["Feb"]);
object

The object type is an alias for System.Object in the .NET Framework. You can assign values of any type to variables of type object.

All data types, predefined and user-defined, inherit from the System.Object class. The object data type is the type to and from which objects are boxed.

Example

The following sample shows how variables of type object can accept values of any data type and how variables of type object can use methods on System.Object from the .NET Framework.

 HYPERLINK "javascript:CopyCode('ctl00_rs1_mainContentContainer_ctl02');"

 INCLUDEPICTURE "http://i.msdn.microsoft.com/Platform/Controls/CodeSnippet/resources/copy_off.gif" * MERGEFORMATINET

Copy Code
// keyword_object.cs

using System;

public class MyClass1

{

 public int i = 10;

}

public class MyClass2

{

 public static void Main()

 {

 object a;

 a = 1; // an example of boxing

 Console.WriteLine(a);

 Console.WriteLine(a.GetType());

 Console.WriteLine(a.ToString());

 Console.WriteLine();

 a = new MyClass1 ();

 MyClass1 ref_MyClass1;

 ref_MyClass1 = (MyClass1)a;

 Console.WriteLine(ref_MyClass1.i);

 }

}

Output

Copy Code

1

System.Int32

1

10

Overloaded OperatorsStatic method for implementing a certain operatorstruct Fraction {int x, y;public Fraction (int x, int y) {this.x = x; this.y = y; }public staticFraction operator +(Fraction a, Fraction b) {return new Fraction(a.x * b.y + b.x * a.y, a.y * b.y);}}UseFraction a = new Fraction(1, 2);Fraction b = new Fraction(3, 4);Fraction c = a + b; // c.x == 10, c.y == 8•The following operators can be overloaded:–arithmetic: +, -(unary and binary), *, /, %, ++, --–relational: ==, !=, <, >, <=, >=–bit operators: &, |, ^–others: !, ~, >>, <<, true, false•Mustreturn a value
65

Nested Types

class A{

int x;

B b = new B(this);

public void f() { b.f(); }

}

class C {

A a = new A();

A.B b = new A.B(a);

}

For auxiliary classes that should be hidden

-Inner class can access all members of the outer class (even private members).

-Outer class can access only public members of the inner class.

-Other classes can access an inner class only if it is public.

Nested types can also be structs, enums, interfaces and delegates.

public class B{

A a;

public B(A a) { this.a = a; }

public void f() { a.x= ...; ... a.f(); }

}
Error handling is an important feature of a programming language. A good error handling mechanism will make it easier for the programmers of that language to write robust applications. This article introduces you to error handling in C# and offers examples on how to use it.

[image: image2.wmf]Most older programming languages, such as C and Basic, rely on the heavy use of if statements to detect if an error has occurred. As programs become bigger and more complicated, this approach to that kind of error handling creates more and more insomniacs in the computer programmer profession. Creating robust and reliable large applications is also exponentially more difficult as the number of lines of code increases. More modern programming languages, such as C++, Java, C# and VB.NET, base their error-handling strategy on code isolation. Part of the code that could potentially lead to an error is isolated in a block, and should an error occur, this error is caught and handled locally. This approach seems to work satisfactorily. No more if statement to check the returned value of a function, no more branching that can turn your code into a spaghetti mess.
C# follows Java's and C++'s approach to error handling: throwing exceptions on errors. In C#, to trap an error is to catch it. You use a try ... catch ... finally block to handle errors. You isolate code that could lead to an error in the try clause, and when the error does occur, program control is passed to the code in the catch clause. The optional finally clause will be executed regardless if there was an error or not. The syntax of the try ... catch ... finally block is as follows.

try {

 // code that could lead to an error

}

catch (Exception Type [variable]) {

 // code that needs to be executed when an error occurs

}

finally {

 // code that needs to run whether or not an

 // error has occurred.

}
Note that, unlike in Java, the exception object variable in the catch block is optional.

.NET Exception Classes

	Related Reading

C# Essentials
By Ben Albahari, Peter Drayton & Brad Merrill
Table of Contents
Index
Sample Chapter
Full Description
Read Online -- Safari

C# is part of the Microsoft .NET Framework. C# does not have a type library of its own, but shares the .NET Framework class library with other .NET languages. The .NET class library provides a root class for exception handling: the Exception class in the System namespace. This class is the parent class of all exception classes.

The Exception class has a number of useful properties and methods. For example, its Message property gives you the error message text that you can display on the screen so that your user can report that back to you. Another property, Source, gets or sets a string containing the name of the application or the object that causes the error.

The Exception class has three methods of its own. They are:

· GetBaseException. This method returns the original, innermost exception that causes this exception and other related exceptions, linked via the InnerException property. If the current exception is the only one thrown, then its reference will be returned.

· GetObjectData. This method sets SerializationInfo with all of the exception object data targeted for serialization. During deserialization, the exception object is reconstituted from the SerializationInfo transmitted over the stream.

· ToString. This method returns the fully qualified name of this exception, and possibly the error message, the name of the inner exception, and the stack trace.

The code in Listing 1 illustrates C# error handling in a class named Testing. The Main method of the class has a try ... catch block that will catch any exception that occurs. Consider the for loop in the try clause:

for (int i=5; i>=0; i--) {

 int b = 2/i;

}
The last iteration will have i=0, and a division by zero will occur. What happens then?

Listing 1: A simple exception handling block

using System;

class Testing {

 public static void Main() {

 try {

 for (int i=5; i>=0; i--) {

 int b = 2/i;

 }

 }

 catch (Exception e) {

 Console.WriteLine(e.ToString());

 }

 }

}

Because the code is placed inside of a try ... catch block, the error won't cause the program to crash. The exception will be caught and control will be passed to the code in the catch clause. The user will see the following in the console:

System.DivideByZeroException: Attempted to divide by zero.
Overloadable Operators

C# allows user-defined types to overload operators by defining static member functions using the operator keyword. Not all operators can be overloaded, however, and others have restrictions, as listed in this table:

	Operators
	Overloadability

	+, -, !, ~, ++, --, true, false
	These unary operators can be overloaded.

	+, -, *, /, %, &, |, ^, <<, >>
	These binary operators can be overloaded.

	==, !=, <, >, <=, >=
	The comparison operators can be overloaded (but see note below).

	&&, ||
	The conditional logical operators cannot be overloaded, but they are evaluated using & and |, which can be overloaded; see 7.11.2 User-defined conditional logical operators.

	[]
	The array indexing operator cannot be overloaded, but you can define indexers.

	()
	The cast operator cannot be overloaded, but you can define new conversion operators (see explicit and implicit).

	+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=
	Assignment operators cannot be overloaded, but +=, for example, is evaluated using +, which can be overloaded.

	=, ., ?:, ->, new, is, sizeof, typeof
	These operators cannot be overloaded.

Note The comparison operators, if overloaded, must be overloaded in pairs; that is, if == is overloaded, != must also be overloaded. The reverse is also true, and similar for < and >, and for <= and >=.

7.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any expression. In addition to the predefined implementations, user-defined implementations can be introduced by including operator declarations in classes and structs (Section 10.9). User-defined operator implementations always take precedence over predefined operator implementations: Only when no applicable user-defined operator implementations exist will the predefined operator implementations be considered.

The overloadable unary operators are:

Copy Code

+ - ! ~ ++ -- true false

Although true and false are not used explicitly in expressions, they are considered operators because they are invoked in several expression contexts: Boolean expressions (Section 7.16) and expressions involving the conditional (Section 7.12), and conditional logical operators (Section 7.11).

The overloadable binary operators are:

Copy Code

+ - * / % & | ^ << >> == != > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access, method invocation, or the =, &&, ||, ?:, checked, unchecked, new, typeof, as, and is operators.

When a binary operator is overloaded, the corresponding assignment operator (if any) is also implicitly overloaded. For example, an overload of operator * is also an overload of operator *=. This is described further in Section 7.13. Note that the assignment operator itself (=) cannot be overloaded. An assignment always performs a simple bit-wise copy of a value into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (Section 6.4).

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing is supported through indexers (Section 10.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced using functional notation. The following table shows the relationship between operator and functional notations for unary and binary operators. In the first entry, op denotes any overloadable unary prefix operator. In the second entry, op denotes the unary postfix ++ and -- operators. In the third entry, op denotes any overloadable binary operator.

	Operator notation
	Functional notation

	op x
	operator op(x)

	x op
	operator op(x)

	x op y
	operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct type that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For example, the / operator is always a binary operator, always has the precedence level specified in Section 7.2.1, and is always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases, implementations that produce results other than those that are intuitively expected are strongly discouraged. For example, an implementation of operator == should compare the two operands for equality and return an appropriate bool result.

The descriptions of individual operators in Section 7.5 through Section 7.13 specify the predefined implementations of the operators and any additional rules that apply to each operator. The descriptions make use of the terms unary operator overload resolution, binary operator overload resolution, and numeric promotion, definitions of which are found in the following sections.

delegate

A delegate declaration defines a reference type that can be used to encapsulate a method with a specific signature. A delegate instance encapsulates a static or an instance method. Delegates are roughly similar to function pointers in C++; however, delegates are type-safe and secure.

This declaration takes the following form::

[attributes] [modifiers] delegate result-type identifier ([formal-parameters]);

where:

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see 17. Attributes.

modifiers (Optional)

The allowed modifiers are new and the four access modifiers.

result-type

The result type, which matches the return type of the method.

identifier

The delegate name.

formal-parameters (Optional)

Parameter list. If a parameter is a pointer, the delegate must be declared with the unsafe modifier.

Remarks

A delegate lets you pass a function as a parameter. The type safety of delegates requires the function you pass as a delegate to have the same signature as the delegate declaration. See the Delegates Tutorial for more information on using delegates.

The Delegates Tutorial shows how to compose delegates, that is, create delegates from other delegates. A delegate that contains an out parameter cannot be composed.

Delegates are the basis for events.

For more information on delegates, see 15. Delegates.

Example 1

The following is a simple example of declaring and using a delegate.

Copy Code

// keyword_delegate.cs

// delegate declaration

delegate void MyDelegate(int i);

class Program

{

 public static void Main()

 {

 TakesADelegate(new MyDelegate(DelegateFunction));

 }

 public static void TakesADelegate(MyDelegate SomeFunction)

 {

 SomeFunction(21);

 }

 public static void DelegateFunction(int i)

 {

 System.Console.WriteLine("Called by delegate with number: {0}.", i);

 }

}

Output

Copy Code

Called by delegate with number: 21.

Example 2

In the following example, one delegate is mapped to both static and instance methods and returns specific information from each.

Copy Code

// keyword_delegate2.cs

// Calling both static and instance methods from delegates

using System;

// delegate declaration

delegate void MyDelegate();

public class MyClass

{

 public void InstanceMethod()

 {

 Console.WriteLine("A message from the instance method.");

 }

 static public void StaticMethod()

 {

 Console.WriteLine("A message from the static method.");

 }

}

public class MainClass

{

 static public void Main()

 {

 MyClass p = new MyClass();

 // Map the delegate to the instance method:

 MyDelegate d = new MyDelegate(p.InstanceMethod);

 d();

 // Map to the static method:

 d = new MyDelegate(MyClass.StaticMethod);

 d();

 }

}

Output

Copy Code

A message from the instance method.

A message from the static method.

interface

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. The declaration takes the following form::

[attributes] [modifiers] interface identifier [:base-list] {interface-body}[;]

where:

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see 17. Attributes.

modifiers (Optional)

The allowed modifiers are new and the four access modifiers.

identifier

The interface name.

base-list (Optional)

A list that contains one or more explicit base interfaces separated by commas.

interface-body

Declarations of the interface members.

Remarks

An interface can be a member of a namespace or a class and can contain signatures of the following members:

· Methods

· Properties

· Indexers

· Events

An interface can inherit from one or more base interfaces. In the following example, the interface IMyInterface inherits from two base interfaces, IBase1 and IBase2:

Copy Code

interface IMyInterface: IBase1, IBase2

{

 void MethodA();

 void MethodB();

}

Interfaces can be implemented by classes and structs. The identifier of the implemented interface appears in the class base list. For example:

Copy Code

class Class1: Iface1, Iface2

{

 // class members

}

When a class base list contains a base class and interfaces, the base class comes first in the list. For example:

Copy Code

class ClassA: BaseClass, Iface1, Iface2

{

 // class members

}

For more information on interfaces, see Interfaces.

For more information on properties and indexers, see Property Declaration and Indexer Declaration.

Example

The following example demonstrates interface implementation. In this example, the interface IPoint contains the property declaration, which is responsible for setting and getting the values of the fields. The class MyPoint contains the property implementation.

Copy Code

// keyword_interface.cs

// Interface implementation

using System;

interface IPoint

{

 // Property signatures:

 int x

 {

 get;

 set;

 }

 int y

 {

 get;

 set;

 }

}

class MyPoint : IPoint

{

 // Fields:

 private int myX;

 private int myY;

 // Constructor:

 public MyPoint(int x, int y)

 {

 myX = x;

 myY = y;

 }

 // Property implementation:

 public int x

 {

 get

 {

 return myX;

 }

 set

 {

 myX = value;

 }

 }

 public int y

 {

 get

 {

 return myY;

 }

 set

 {

 myY = value;

 }

 }

}

class MainClass

{

 private static void PrintPoint(IPoint p)

 {

 Console.WriteLine("x={0}, y={1}", p.x, p.y);

 }

 public static void Main()

 {

 MyPoint p = new MyPoint(2,3);

 Console.Write("My Point: ");

 PrintPoint(p);

 }

}

Output

Copy Code

My Point: x=2, y=3

Inheritance (C# Programming Guide)

Classes can inherit from another class. This is accomplished by putting a colon after the class name when declaring the class, and naming the class to inherit from—the base class—after the colon, as follows:

C#

Copy Code

public class A

{

 public A() { }

}

public class B : A

{

 public B() { }

}

The new class—the derived class—then gains all the non-private data and behavior of the base class in addition to any other data or behaviors it defines for itself. The new class then has two effective types: the type of the new class and the type of the class it inherits.

In the example above, class B is effectively both B and A. When you access a B object, you can use the cast operation to convert it to an A object. The B object is not changed by the cast, but your view of the B object becomes restricted to A's data and behaviors. After casting a B to an A, that A can be cast back to a B. Not all instances of A can be cast to B—just those that are actually instances of B. If you access class B as a B type, you get both the class A and class B data and behaviors. The ability for an object to represent more than one type is called polymorphism. For more information, see Polymorphism (C# Programming Guide). For more information on casting, see Casting (C# Programming Guide).

Structs cannot inherit from other structs or classes. Both classes and structs can inherit from one or more interfaces. For more information

Polymorphism (C# Programming Guide)

Through inheritance, a class can be used as more than one type; it can be used as its own type, any base types, or any interface type if it implements interfaces. This is called polymorphism. In C#, every type is polymorphic. Types can be used as their own type or as a Object instance, because any type automatically treats Object as a base type.

Polymorphism is important not only to the derived classes, but to the base classes as well. Anyone using the base class could, in fact, be using an object of the derived class that has been cast to the base class type. Designers of a base class can anticipate the aspects of their base class that are likely to change for a derived type. For example, a base class for cars might contain behavior that is subject to change when the car in question is a minivan or a convertible. A base class can mark those class members as virtual, allowing derived classes representing convertibles and minivans to override that behavior.

For more information, see Inheritance.

Polymorphism Overview

When a derived class inherits from a base class, it gains all the methods, fields, properties and events of the base class. To change the data and behavior of a base class, you have two choices: you can replace the base member with a new derived member, or you can override a virtual base member.

Replacing a member of a base class with a new derived member requires the new keyword. If a base class defines a method, field, or property, the new keyword is used to create a new definition of that method, field, or property on a derived class. The new keyword is placed before the return type of a class member that is being replaced. For example:

C#

Copy Code

public class BaseClass

{

 public void DoWork() { }

 public int WorkField;

 public int WorkProperty

 {

 get { return 0; }

 }

}

public class DerivedClass : BaseClass

{

 public new void DoWork() { }

 public new int WorkField;

 public new int WorkProperty

 {

 get { return 0; }

 }

}

When the new keyword is used, the new class members are called instead of the base class members that have been replaced. Those base class members are called hidden members. Hidden class members can still be called if an instance of the derived class is cast to an instance of the base class. For example:

C#

Copy Code

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;

A.DoWork(); // Calls the old method.

In order for an instance of a derived class to completely take over a class member from a base class, the base class has to declare that member as virtual. This is accomplished by adding the virtual keyword before the return type of the member. A derived class then has the option of using the override keyword, instead of new, to replace the base class implementation with its own. For example:

C#

Copy Code

public class BaseClass

{

 public virtual void DoWork() { }

 public virtual int WorkProperty

 {

 get { return 0; }

 }

}

public class DerivedClass : BaseClass

{

 public override void DoWork() { }

 public override int WorkProperty

 {

 get { return 0; }

 }

}

Fields cannot be virtual; only methods, properties, events and indexers can be virtual. When a derived class overrides a virtual member, that member is called even when an instance of that class is being accessed as an instance of the base class. For example:

C#

Copy Code

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;

A.DoWork(); // Also calls the new method.

Virtual methods and properties allow you to plan ahead for future expansion. Because a virtual member is called regardless of which type the caller is using, it gives derived classes the option to completely change the apparent behavior of the base class.

Virtual members remain virtual indefinitely, no matter how many classes have been declared between the class that originally declared the virtual member. If class A declares a virtual member, and class B derives from A, and class C derives from B, class C inherits the virtual member, and has the option to override it, regardless of whether class B declared an override for that member. For example:

C#

Copy Code

public class A

{

 public virtual void DoWork() { }

}

public class B : A

{

 public override void DoWork() { }

}

C#

Copy Code

public class C : B

{

 public override void DoWork() { }

}

A derived class can stop virtual inheritance by declaring an override as sealed. This requires putting the sealed keyword before the override keyword in the class member declaration. For example:

C#

Copy Code

public class C : B

{

 public sealed override void DoWork() { }

}

In the previous example, the method DoWork is no longer virtual to any class derived from C. It is still virtual for instances of C, even if they are cast to type B or type A. Sealed methods can be replaced by derived classes using the new keyword, as the following example shows:

C#

Copy Code

public class D : C

{

 public new void DoWork() { }

}

In this case, if DoWork is called on D using a variable of type D, the new DoWork is called. If a variable of type C, B, or A is used to access an instance of D, a call to DoWork will follow the rules of virtual inheritance, routing those calls to the implementation of DoWork on class C.

A derived class that has replaced or overridden a method or property can still access the method or property on the base class using the base keyword. For example:

C#

Copy Code

public class A

{

 public virtual void DoWork() { }

}

public class B : A

{

 public override void DoWork() { }

}

C#

Copy Code

public class C : B

{

 public override void DoWork()

 {

 // Call DoWork on B to get B's behavior:

 base.DoWork();

 // DoWork behavior specific to C goes here:

 // ...

 }

}

For more information, see base.

	[image: image25.png]

Note

	It is recommended that virtual members use base to call the base class implementation of that member in their own implementation. Letting the base class behavior happen allows the derived class to concentrate on implementing behavior specific to the derived class. If the base class implementation is not called, it is up to the derived class to make their behavior compatible with the behavior of the base class

_1276080547.unknown

