Do not use clock pulses. The change of
internal state occurs when there is a change in
the input variable.
Their memory elements are either unclocked
flip-flops or time-delay elements.
They often resemble combinational circuits
with feedback.
Their synthesis is much more difficult than the
synthesis of clocked synchronous sequential
circuits.
They are used when speed of operation is
important.

UNIT -V

Asynchronous sequential circuits:
The communication of two units, with each unit
having its own independent clock, must be done
with asynchronous circuits.
The next step is to plot the Y1 and Y2 functions in a
map:
Combining the binary values in corresponding
squares the following transition table is obtained:
The transition table shows the value of Y = Y1Y2
inside each square. Those entries where Y = y are
circled to indicate a stable condition.
1. Analysis Procedure
The analysis of asynchronous sequential circuits
proceeds in much the same way as that of clocked
synchronous sequential circuits. From a logic
diagram, Boolean expressions are written and
then transferred into tabular form.
1.1 Transition Table
The analysis of the circuit starts by considering the
excitation variables (Y1 and Y2) as outputs and the
secondary variables (y1 and y2) as inputs.
The Boolean expressions are:
 Y1 xy1 x ′y 2
 ′Y2 xy1 x ′y 2
3

4

[image: image1]The circuit has four stable total states – y1y2x =
000, 011, 110, and 101 – and four unstable total
states – 001, 010, 111, and 100.
The state table of the circuit is shown below:
In order to obtain the circuit described by a flow
table, it is necessary to assign to each state a
distinct value.
This assignment converts the flow table into a
transition table. This is shown below:
This table provides the same information as the
transition table.
1.2 Flow Table
In a flow table the states are named by letter
symbols. Examples of flow tables are as follows:
The resulting logic diagram is shown below:
primitive flow table
5

6

1.3 Race Conditions
A race condition exists in an asynchronous circuit
when two or more binary state variables change
value in response to a change in an input variable.
When unequal delays are encountered, a race
condition may cause the state variable to change
in an unpredictable manner.
If the final stable state that the circuit reaches
does not depend on the order in which the state
variables change, the race is called a noncritical
race. Examples of noncritical races are illustrated
in the transition tables below:
The transition tables below illustrate critical races:
Races can be avoided by directing the circuit
through a unique sequence of intermediate
unstable states. When a circuit does that, it is said
to have a cycle. Examples of cycles are:
7

8

[image: image3.jpg]1.4 Stability Considerations
An asynchronous sequential circuit may become
unstable and oscillate between unstable states
because of the presence of feedback. The
instability condition can be detected from the
transition table. Consider the following circuit:
2. Circuits with SR Latches
The SR latch is used as a time-delay element in
asynchronous sequential circuits. The NOR gate
SR latch and its truth table are:
The excitation function is:
′′Y (x1y)′x2 (x1 y ′)x2 x1x2 x2 y ′
The feedback is more visible when the circuit is
redrawn as:
and the transition table for the circuit is:
The Boolean function of the output is:
Y [(S y)′R]′(S y)R ′SR ′R ′y
Those values of Y that are equal to y are circled
and represent stable states. When the input x1x2 is
11, the state variable alternates between 0 and 1
indefinitely.
 9

and the transition table for the circuit is:
10

The NAND gate SR latch and its truth table are:
The behaviour of the SR latch can be investigated
from the transition table.
The condition to be avoided is that both S and R
inputs must not be 1 simultaneously. This condition
is avoided when SR = 0 (i.e., ANDing of S and R
must always result in 0).
When SR = 0 holds at all times, the excitation
function derived previously:
Y SR ′R ′y
The transition table for the circuit is:
can be expressed as:
Y S R ′y
The condition to be avoided here is that both S
and R not be 0 simultaneously which is satisfied
when S′R′ = 0.
The excitation function for the circuit is:
11

Y [S(Ry)′]′S ′Ry
12

[image: image4.jpg]2.1 Analysis Example
Consider the following circuit:
The next step is to derive the transition table of the
circuit. The excitation functions are derived from
the relation Y = S + R′y as:
′Y1 S1 R1y1
x1y 2 (x1 x 2)y1 x1y 2 x1y1 x 2 y1
′Y2 S2 R2 y 2
′′x1x 2 (x 2 y1)y 2 x1x 2 x 2 y 2 y1y 2
Next a composite map for Y = Y1Y2 is developed:
The first step is to obtain the Boolean functions for
the S and R inputs in each latch:
S1 x1y 2
 ′′R1 x1x 2
S2 x1x 2
 ′R2 x 2 y 1
The next step is to check if SR = 0 is satisfied:
′′S1R1 x1y 2 x1x 2 0
 ′S2R2 x1x 2 x 2 y1 0
Investigation of the transition table reveals that the
circuit is stable.
There is a critical race condition when the circuit is
initially in total state y1y2x1x2 = 1101 and x2
changes from 1 to 0. If Y1 changes to 0 before Y2,
the circuit goes to total state 0100 instead of 0000.
13

14

The result is 0 because x1x′1 = x2x′2 = 0
2.2 SR Latch Excitation Table
Lists the required inputs S and R for each of the
possible transitions from the secondary variable y
to the excitation variable Y.
X represents a don’t care condition.
The maps are then used to derive the simplified
Boolean functions:
Useful for obtaining the Boolean functions for S
and R and the circuit’s logic diagram from a given
transition table.
2.3 Implementation Example
Consider the following transition table:
′S x1x 2
′R x1
The logic diagram consists of an SR latch and
gates required to implement the S and R Boolean
functions. The circuit when a NOR SR latch is used
is as shown below:
′Y x1x2 x1y
From the information given in the transition table
and the SR latch excitation table, we can obtain
maps for the S and R inputs of the latch:
15

With a NAND SR latch the complemented values
for S and R must be used.
16

[image: image5.jpg]3. Design Procedure
There are a number of steps that must be carried
out in order to minimize the circuit complexity and
to produce a stable circuit without critical races.
Briefly, the design steps are as follows:
1.
2.
3.
Obtain a primitive flow table from the given
specification.
Reduce the flow table by merging rows in
the primitive flow table.
Assign binary states variables to each row of
the reduced flow table to obtain the
transition table.
Assign output values to the dashes
associated with the unstable states to obtain
the output maps.
Simplify the Boolean functions of the
excitation and output variables and draw the
logic diagram.
3.1 Design Example – Specification
Design a gated latch circuit with two inputs, G
(gate) and D (data), and one output Q. The gated
latch is a memory element that accepts the value
of D when G = 1 and retains this value after G
goes to 0. Once G = 0, a change in D does not
change the value of the output Q.
Step 1: Primitive Flow Table
A primitive flow table is a flow table with only one
stable total state in each row. The total state
consists of the internal state combined with the
input.
To derive the primitive flow table, first a table with
all possible total states in the system is needed:
4.
5.
The design process will be demonstrated by going
through a specific example:
Each row in the above table specifies a total state.
17

18

The resulting primitive table for the gated latch is
shown below:
Step 2: Reduction of the Primitive Flow Table
The primitive flow table can be reduced to a
smaller number of rows if two or more stable
states are placed in the same row of the flow
table. The simplified merging rules are as follows:
1.
Two or more rows in the primitive flow table
can be merged into one if there are non-
conflicting states and outputs in each of the
columns.
 Whenever, one state symbol and don’t care
entries are encountered in the same column,
the state is listed in the merged row.
If the state is circled in one of the rows, it is
also circled in the merged row.
The output state is included with each stable
state in the merged row.
2.
First, we fill in one square in each row belonging to
the stable state in that row.
Next recalling that both inputs are not allowed to
change at the same time, we enter dash marks in
each row that differs in two or more variables from
the input variables associated with the stable state.
Next we find values for two more squares in each
row. The comments listed in the previous table
may help in deriving the necessary information.
A dash indicates don’t care conditions.
19

3.
4.
Now apply these rules to the primitive flow table
shown previously.
To see how this is done the primitive flow table is
separated into two parts of three rows each:
20

[image: image6.jpg][image: image2]
