
Chapter 6
Introducing Classes

129

130 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The class is at the core of Java. It is the logical construct upon which the entire Java
language is built because it defines the shape and nature of an object. As such,
the class forms the basis for object-oriented programming in Java. Any concept

you wish to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be

devoted to it. Here, you will be introduced to the basic elements of a class and learn
how a class can be used to create objects. You will also learn about methods, constructors,
and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the
most rudimentary form of a class has been used. The classes created in the preceding
chapters primarily exist simply to encapsulate the main() method, which has been used
to demonstrate the basics of the Java syntax. As you will see, classes are substantially
more powerful than the limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object is an instance of a class. Because an
object is an instance of a class, you will often see the two words object and instance used
interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will
see, a class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up
to this point are actually very limited examples of its complete form. Classes can (and
usually do) get much more complex. The general form of a class definition is shown here:

class classname {
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;

type methodname1(parameter-list) {
// body of method

}
type methodname2(parameter-list) {

// body of method

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 131

TH
E

JA
V
A

LA
N

G
U

A
G

E

}
// ...

type methodnameN(parameter-list) {
// body of method

}
}

The data, or variables, defined within a class are called instance variables. The code
is contained within methods. Collectively, the methods and variables defined within
a class are called members of the class. In most classes, the instance variables are acted
upon and accessed by the methods defined for that class. Thus, it is the methods that
determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance
of the class (that is, each object of the class) contains its own copy of these variables.
Thus, the data for one object is separate and unique from the data for another. We
will come back to this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus
far. However, most methods will not be specified as static or public. Notice that the
general form of a class does not specify a main() method. Java classes do not need to
have a main() method. You only specify one if that class is the starting point for your
program. Further, applets don’t require a main() method at all.

C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes
for very large .java files, since any class must be entirely defined in a single source file.
This design feature was built into Java because it was felt that in the long run, having
specification, declaration, and implementation all in one place makes for code that is
easier to maintain.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {

double width;

double height;

double depth;

}

As stated, a class defines a new type of data. In this case, the new data type is called
Box. You will use this name to declare objects of type Box. It is important to remember

that a class declaration only creates a template; it does not create an actual object. Thus,
the preceding code does not cause any objects of type Box to come into existence.

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Again, each time you create an instance of a class, you are creating an object that
contains its own copy of each instance variable defined by the class. Thus, every Box
object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name
of the object with the name of an instance variable. For example, to assign the width
variable of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within
the mybox object the value of 100. In general, you use the dot operator to access both
the instance variables and the methods within an object.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java

*/

class Box {

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables

mybox.width = 10;

132 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this
program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is
not necessary for both the Box and the BoxDemo class to actually be in the same source
file. You could put each class in its own file, called Box.java and BoxDemo.java,
respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see
the following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This
means that if you have two Box objects, each has its own copy of depth, width, and
height. It is important to understand that changes to the instance variables of one
object have no effect on the instance variables of another. For example, the following
program declares two Box objects:

// This program declares two Box objects.

class Box {

double width;

double height;

double depth;

}

class BoxDemo2 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 133

TH
E

JA
V
A

LA
N

G
U

A
G

E

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box

vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box

vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}

}

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained
in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can
use this type to declare objects of that type. However, obtaining objects of a class is a
two-step process. First, you must declare a variable of the class type. This variable does
not define an object. Instead, it is simply a variable that can refer to an object. Second,
you must acquire an actual, physical copy of the object and assign it to that variable. You
can do this using the new operator. The new operator dynamically allocates (that
is, allocates at run time) memory for an object and returns a reference to it. This
reference is, more or less, the address in memory of the object allocated by new.

134 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated. Let’s look at the details of this procedure.

In the preceding sample programs, a line similar to the following is used to declare
an object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line
executes, mybox contains the value null, which indicates that it does not yet point to
an actual object. Any attempt to use mybox at this point will result in a compile-time
error. The next line allocates an actual object and assigns a reference to it to mybox.
After the second line executes, you can use mybox as if it were a Box object. But in
reality, mybox simply holds the memory address of the actual Box object. The effect
of these two lines of code is depicted in Figure 6-1.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 135

TH
E

JA
V
A

LA
N

G
U

A
G

E

Figure 6-1. Declaring an object of type Box

Those readers familiar with C/C++ have probably noticed that object references appear
to be similar to pointers. This suspicion is, essentially, correct. An object reference is
similar to a memory pointer. The main difference—and the key to Java’s safety—is that
you cannot manipulate references as you can actual pointers. Thus, you cannot cause an
object reference to point to an arbitrary memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has
this general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of
the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class
is created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their
class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such
things as integers or characters. The answer is that Java’s simple types are not implemented
as objects. Rather, they are implemented as “normal” variables. This is done in the interest
of efficiency. As you will see, objects have many features and attributes that require Java
to treat them differently than it treats the simple types. By not applying the same overhead
to the simple types that applies to objects, Java can implement the simple types more
efficiently. Later, you will see object versions of the simple types that are available for
your use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run
time. The advantage of this approach is that your program can create as many or as
few objects as it needs during the execution of your program. However, since memory
is finite, it is possible that new will not be able to allocate memory for an object because
insufficient memory exists. If this happens, a run-time exception will occur. (You will
learn how to handle this and other exceptions in Chapter 10.) For the sample programs
in this book, you won’t need to worry about running out of memory, but you will need
to consider this possibility in real-world programs that you write.

Let’s once again review the distinction between a class and an object. A class creates
a new data type that can be used to create objects. That is, a class creates a logical
framework that defines the relationship between its members. When you declare an
object of a class, you are creating an instance of that class. Thus, a class is a logical
construct. An object has physical reality. (That is, an object occupies space in memory.)
It is important to keep this distinction clearly in mind.

136 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment
takes place. For example, what do you think the following fragment does?

Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred
to by b1. That is, you might think that b1 and b2 refer to separate and distinct objects.
However, this would be wrong. Instead, after this fragment executes, b1 and b2 will
both refer to the same object. The assignment of b1 to b2 did not allocate any memory
or copy any part of the original object. It simply makes b2 refer to the same object as
does b1. Thus, any changes made to the object through b2 will affect the object to
which b1 is referring, since they are the same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other
way. For example, a subsequent assignment to b1 will simply unhook b1 from the
original object without affecting the object or affecting b2. For example:

Box b1 = new Box();

Box b2 = b1;

// ...

b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

When you assign one object reference variable to another object reference variable, you
are not creating a copy of the object, you are only making a copy of the reference.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 137

TH
E

JA
V
A

LA
N

G
U

A
G

E

138 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things:
instance variables and methods. The topic of methods is a large one because Java gives
them so much power and flexibility. In fact, much of the next chapter is devoted to
methods. However, there are some fundamentals that you need to learn now so that
you can begin to add methods to your classes.

This is the general form of a method:

type name(parameter-list) {
// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return
type must be void. The name of the method is specified by name. This can be any legal
identifier other than those already used by other items within the current scope. The
parameter-list is a sequence of type and identifier pairs separated by commas. Parameters
are essentially variables that receive the value of the arguments passed to the method when
it is called. If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods,

including those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time you will use methods to access the instance variables defined by the class.
In fact, methods define the interface to most classes. This allows the class implementor
to hide the specific layout of internal data structures behind cleaner method abstractions.
In addition to defining methods that provide access to data, you can also define methods
that are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you
while looking at the preceding programs that the computation of a box’s volume was
something that was best handled by the Box class rather than the BoxDemo class. After

all, since the volume of a box is dependent upon the size of the box, it makes sense to
have the Box class compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {

double width;

double height;

double depth;

// display volume of a box

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

This program generates the following output, which is the same as the previous version.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 139

TH
E

JA
V
A

LA
N

G
U

A
G

E

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();

mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator.
Thus, the call to mybox1.volume() displays the volume of the box defined by mybox1,
and the call to mybox2.volume() displays the volume of the box defined by mybox2.
Each time volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion
will help clear things up. When mybox1.volume() is executed, the Java run-time system
transfers control to the code defined inside volume(). After the statements inside
volume() have executed, control is returned to the calling routine, and execution
resumes with the line of code following the call. In the most general sense, a method
is Java’s way of implementing subroutines.

There is something very important to notice inside the volume() method: the
instance variables width, height, and depth are referred to directly, without preceding
them with an object name or the dot operator. When a method uses an instance variable
that is defined by its class, it does so directly, without explicit reference to an object and
without use of the dot operator. This is easy to understand if you think about it. A method
is always invoked relative to some object of its class. Once this invocation has occurred,
the object is known. Thus, within a method, there is no need to specify the object a second
time. This means that width, height, and depth inside volume() implicitly refer to the
copies of those variables found in the object that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the
class in which that instance variable is defined, it must be done through an object, by
use of the dot operator. However, when an instance variable is accessed by code that is
part of the same class as the instance variable, that variable can be referred to directly.
The same thing applies to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what
if another part of your program wanted to know the volume of a box, but not display
its value? A better way to implement volume() is to have it compute the volume of the
box and return the result to the caller. The following example, an improved version of
the preceding program, does just that:

140 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 141

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Now, volume() returns the volume of a box.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo4 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

142 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned
by volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

■ The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

■ The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently
because there is actually no need for the vol variable. The call to volume() could have
been used in the println() statement directly, as shown here:

System.out.println("Volume is " + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically
and its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or
be used in a number of slightly different situations. To illustrate this point, let’s use
a very simple example. Here is a method that returns the square of the number 10:

int square()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very
limited. However, if you modify the method so that it takes a parameter, as shown
next, then you can make square() much more useful.

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 143

TH
E

JA
V
A

LA
N

G
U

A
G

E

int square(int i)

{

return i * i;

}

Now, square() will return the square of whatever value it is called with. That is,
square() is now a general-purpose method that can compute the square of any integer
value, rather than just 10.

Here is an example:

int x, y;

x = square(5); // x equals 25

x = square(9); // x equals 81

y = 2;

x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second
call, i will receive the value 9. The third invocation passes the value of y, which is 2 in
this example. As these examples show, square() is able to return the square of whatever
data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter
is a variable defined by a method that receives a value when the method is called.
For example, in square(), i is a parameter. An argument is a value that is passed to
a method when it is invoked. For example, square(100) passes 100 as an argument.
Inside square(), the parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence
of statements, such as:

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed
Java programs, instance variables should be accessed only through methods defined by
their class. In the future, you can change the behavior of a method, but you can’t change
the behavior of an exposed instance variable.

144 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Thus, a better approach to setting the dimensions of a box is to create a method
that takes the dimension of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {

double width;

double height;

double depth;

// compute and return volume

double volume() {

return width * height * depth;

}

// sets dimensions of box

void setDim(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

}

class BoxDemo5 {

public static void main(String args[]) {

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// initialize each box

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you,
then you might want to take some time to experiment before moving on. The concepts
of the method invocation, parameters, and return values are fundamental to Java
programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of
a constructor.

A constructor initializes an object immediately upon creation. It has the same name
as the class in which it resides and is syntactically similar to a method. Once defined,
the constructor is automatically called immediately after the object is created, before the
new operator completes. Constructors look a little strange because they have no return
type, not even void. This is because the implicit return type of a class’ constructor is the
class type itself. It is the constructor’s job to initialize the internal state of an object so
that the code creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.
Let’s begin by defining a simple constructor that simply sets the dimensions of each
box to the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the

dimensions of a box.

*/

class Box {

double width;

double height;

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 145

TH
E

JA
V
A

LA
N

G
U

A
G

E

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

When this program is run, it generates the following results:

Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

146 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor
when they were created. Since the constructor gives all boxes the same dimensions,
10 by 10 by 10, both mybox1 and mybox2 will have the same volume. The println()
statement inside Box() is for the sake of illustration only. Most constructors will not
display anything. They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you
allocate an object, you use the following general form:

class-var = new classname();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The
default constructor automatically initializes all instance variables to zero. The default
constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor
is no longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it
is not very useful—all boxes have the same dimensions. What is needed is a way to
construct Box objects of various dimensions. The easy solution is to add parameters
to the constructor. As you can probably guess, this makes them much more useful. For
example, the following version of Box defines a parameterized constructor which sets
the dimensions of a box as specified by those parameters. Pay special attention to how
Box objects are created.

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box {

double width;

double height;

double depth;

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 147

TH
E

JA
V
A

LA
N

G
U

A
G

E

148 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its
constructor. For example, in the following line,

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 149

TH
E

JA
V
A

LA
N

G
U

A
G

E

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the
object. Thus, mybox1’s copy of width, height, and depth will contain the values 10,
20, and 15, respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You
can use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While
it is redundant in this case, this is useful in other contexts, one of which is explained in
the next section.

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name
inside the same or enclosing scopes. Interestingly, you can have local variables,
including formal parameters to methods, which overlap with the names of the class’
instance variables. However, when a local variable has the same name as an instance
variable, the local variable hides the instance variable. This is why width, height, and
depth were not used as the names of the parameters to the Box() constructor inside the
Box class. If they had been, then width would have referred to the formal parameter,
hiding the instance variable width. While it is usually easier to simply use different
names, there is another way around this situation. Because this lets you refer directly
to the object, you can use it to resolve any name space collisions that might occur
between instance variables and local variables. For example, here is another version of

Box(), which uses width, height, and depth for parameter names and then uses this to
access the instance variables by the same name:

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing,
and some programmers are careful not to use local variables and formal parameter
names that hide instance variables. Of course, other programmers believe the contrary—
that it is a good convention to use the same names for clarity, and use this to overcome
the instance variable hiding. It is a matter of taste which approach you adopt.

Although this is of no significant value in the examples just shown, it is very useful
in certain situations.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must
be manually released by use of a delete operator. Java takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is
called garbage collection. It works like this: when no references to an object exist, that
object is assumed to be no longer needed, and the memory occupied by the object can
be reclaimed. There is no explicit need to destroy objects as in C++. Garbage collection
only occurs sporadically (if at all) during the execution of your program. It will not
occur simply because one or more objects exist that are no longer used. Furthermore,
different Java run-time implementations will take varying approaches to garbage
collection, but for the most part, you should not have to think about it while writing
your programs.

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
window character font, then you might want to make sure these resources are freed
before an object is destroyed. To handle such situations, Java provides a mechanism

150 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 151

TH
E

JA
V
A

LA
N

G
U

A
G

E

called finalization. By using finalization, you can define specific actions that will occur
when an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run
time calls that method whenever it is about to recycle an object of that class. Inside the
finalize() method you will specify those actions that must be performed before an
object is destroyed. The garbage collector runs periodically, checking for objects that
are no longer referenced by any running state or indirectly through other referenced
objects. Right before an asset is freed, the Java run time calls the finalize() method on
the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class. This and the other access specifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage
collection. It is not called when an object goes out-of-scope, for example. This means
that you cannot know when—or even if—finalize() will be executed. Therefore, your
program should provide other means of releasing system resources, etc., used by the
object. It must not rely on finalize() for normal program operation.

If you are familiar with C++, then you know that C++ allows you to define a destructor
for a class, which is called when an object goes out-of-scope. Java does not support this
idea or provide for destructors. The finalize() method only approximates the function
of a destructor. As you get more experienced with Java, you will see that the need for
destructor functions is minimal because of Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with
a more sophisticated example. As you recall from the discussion of object-oriented
programming (OOP) presented in Chapter 2, one of OOP’s most important benefits
is the encapsulation of data and the code that manipulates that data. As you have seen,
the class is the mechanism by which encapsulation is achieved in Java. By creating
a class, you are creating a new data type that defines both the nature of the data being
manipulated and the routines used to manipulate it. Further, the methods define a
consistent and controlled interface to the class’ data. Thus, you can use the class
through its methods without having to worry about the details of its implementation

or how the data is actually managed within the class. In a sense, a class is like a “data
engine.” No knowledge of what goes on inside the engine is required to use the engine
through its controls. In fact, since the details are hidden, its inner workings can be
changed as needed. As long as your code uses the class through its methods, internal
details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down
on the table is the last plate to be used. Stacks are controlled through two operations
traditionally called push and pop. To put an item on top of the stack, you will use push.
To take an item off the stack, you will use pop. As you will see, it is easy to encapsulate
the entire stack mechanism.

Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.

class Stack {

int stck[] = new int[10];

int tos;

// Initialize top-of-stack

Stack() {

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

152 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 6 : I n t r o d u c i n g C l a s s e s 153

TH
E

JA
V
A

LA
N

G
U

A
G

E

As you can see, the Stack class defines two data items and three methods. The stack
of integers is held by the array stck. This array is indexed by the variable tos, which
always contains the index of the top of the stack. The Stack() constructor initializes
tos to –1, which indicates an empty stack. The method push() puts an item on the
stack. To retrieve an item, call pop(). Since access to the stack is through push() and
pop(), the fact that the stack is held in an array is actually not relevant to using the
stack. For example, the stack could be held in a more complicated data structure, such
as a linked list, yet the interface defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two
integer stacks, pushes some values onto each, and then pops them off.

class TestStack {

public static void main(String args[]) {

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the stack

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

}

}

This program generates the following output:

Stack in mystack1:
9
8
7
6
5
4
3
2

1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible

for the array that holds the stack, stck, to be altered by code outside of the Stack class.
This leaves Stack open to misuse or mischief. In the next chapter, you will see how to
remedy this situation.

154 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 7
A Closer Look at
Methods and Classes

155

This chapter continues the discussion of methods and classes begun in the
preceding chapter. It examines several topics relating to methods, including
overloading, parameter passing, and recursion. The chapter then returns to the

class, discussing access control, the use of the keyword static, and one of Java’s most
important built-in classes: String.

Overloading Methods
In Java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. When this is
the case, the methods are said to be overloaded, and the process is referred to as
method overloading. Method overloading is one of the ways that Java implements
polymorphism. If you have never used a language that allows the overloading
of methods, then the concept may seem strange at first. But as you will see, method
overloading is one of Java’s most exciting and useful features.

When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method to
actually call. Thus, overloaded methods must differ in the type and/or number of
their parameters. While overloaded methods may have different return types, the
return type alone is insufficient to distinguish two versions of a method. When Java
encounters a call to an overloaded method, it simply executes the version of the
method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

156 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters
a: 10
a and b: 10 20
double a: 123.25
Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns
a value is of no consequence relative to overloading, since return types do not play a role
in overload resolution.

When an overloaded method is called, Java looks for a match between the
arguments used to call the method and the method’s parameters. However, this match
need not always be exact. In some cases Java’s automatic type conversions can play a
role in overload resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.

class OverloadDemo {

void test() {

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 157

TH
E

JA
V
A

LA
N

G
U

A
G

E

158 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("No parameters");

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

void test(double a) {

System.out.println("Inside test(double) a: " + a);

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

int i = 88;

ob.test();

ob.test(10, 20);

ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}

}

This program generates the following output:

No parameters
a and b: 10 20
Inside test(double) a: 88
Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,
when test() is called with an integer argument inside Overload, no matching method
is found. However, Java can automatically convert an integer into a double, and this
conversion can be used to resolve the call. Therefore, after test(int) is not found, Java
elevates i to double and then calls test(double). Of course, if test(int) had been defined,

it would have been called instead. Java will employ its automatic type conversions only
if no exact match is found.

Method overloading supports polymorphism because it is one way that Java
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following. In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to
implement essentially the same method for different types of data. Consider the
absolute value function. In languages that do not support overloading, there are
usually three or more versions of this function, each with a slightly different name.
For instance, in C, the function abs() returns the absolute value of an integer, labs()
returns the absolute value of a long integer, and fabs() returns the absolute value of a
floating-point value. Since C does not support overloading, each function has to have
its own name, even though all three functions do essentially the same thing. This
makes the situation more complex, conceptually, than it actually is. Although the
underlying concept of each function is the same, you still have three names to
remember. This situation does not occur in Java, because each absolute value method
can use the same name. Indeed, Java’s standard class library includes an absolute value
method, called abs(). This method is overloaded by Java’s Math class to handle all
numeric types. Java determines which version of abs() to call based upon the type of
argument.

The value of overloading is that it allows related methods to be accessed by use
of a common name. Thus, the name abs represents the general action which is being
performed. It is left to the compiler to choose the right specific version for a particular
circumstance. You, the programmer, need only remember the general operation being
performed. Through the application of polymorphism, several names have been
reduced to one. Although this example is fairly simple, if you expand the concept,
you can see how overloading can help you manage greater complexity.

When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship. Thus, while you can use the same name to overload unrelated methods,
you should not. For example, you could use the name sqr to create methods that return
the square of an integer and the square root of a floating-point value. But these two
operations are fundamentally different. Applying method overloading in this manner
defeats its original purpose. In practice, you should only overload closely related
operations.

Overloading Constructors
In addition to overloading normal methods, you can also overload constructor
methods. In fact, for most real-world classes that you create, overloaded constructors
will be the norm, not the exception. To understand why, let’s return to the Box class
developed in the preceding chapter. Following is the latest version of Box:

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 159

TH
E

JA
V
A

LA
N

G
U

A
G

E

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

As you can see, the Box() constructor requires three parameters. This means that
all declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This
raises some important questions. What if you simply wanted a box and did not care (or
know) what its initial dimensions were? Or, what if you want to be able to initialize a
cube by specifying only one value that would be used for all three dimensions? As the
Box class is currently written, these other options are not available to you.

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that
contains an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize

the dimensions of a box various ways.

*/

class Box {

double width;

double height;

double depth;

160 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 161

TH
E

JA
V
A

LA
N

G
U

A
G

E

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters
So far we have only been using simple types as parameters to methods. However, it is
both correct and common to pass objects to methods. For example, consider the following
short program:

// Objects may be passed to methods.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// return true if o is equal to the invoking object

boolean equals(Test o) {

if(o.a == a && o.b == b) return true;

else return false;

}

}

class PassOb {

public static void main(String args[]) {

162 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Test ob1 = new Test(100, 22);

Test ob2 = new Test(100, 22);

Test ob3 = new Test(-1, -1);

System.out.println("ob1 == ob2: " + ob1.equals(ob2));

System.out.println("ob1 == ob3: " + ob1.equals(ob3));

}

}

This program generates the following output:

ob1 == ob2: true
ob1 == ob3: false

As you can see, the equals() method inside Test compares two objects for equality
and returns the result. That is, it compares the invoking object with the one that it is
passed. If they contain the same values, then the method returns true. Otherwise,
it returns false. Notice that the parameter o in equals() specifies Test as its type.
Although Test is a class type created by the program, it is used in just the same way
as Java’s built-in types.

One of the most common uses of object parameters involves constructors.
Frequently you will want to construct a new object so that it is initially the same as
some existing object. To do this, you must define a constructor that takes an object of its
class as a parameter. For example, the following version of Box allows one object to
initialize another:

// Here, Box allows one object to initialize another.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 163

TH
E

JA
V
A

LA
N

G
U

A
G

E

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons2 {

public static void main(String args[]) {

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

Box myclone = new Box(mybox1);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

164 J a v a ™ 2 . 0 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of cube is " + vol);

// get volume of clone

vol = myclone.volume();

System.out.println("Volume of clone is " + vol);

}

}

As you will see when you begin to create your own classes, providing many forms
of constructor methods is usually required to allow objects to be constructed in a
convenient and efficient manner.

A Closer Look at Argument Passing
In general, there are two ways that a computer language can pass an argument to a
subroutine. The first way is call-by-value. This method copies the value of an argument
into the formal parameter of the subroutine. Therefore, changes made to the parameter
of the subroutine have no effect on the argument. The second way an argument can be
passed is call-by-reference. In this method, a reference to an argument (not the value of
the argument) is passed to the parameter. Inside the subroutine, this reference is used
to access the actual argument specified in the call. This means that changes made to the
parameter will affect the argument used to call the subroutine. As you will see, Java
uses both approaches, depending upon what is passed.

In Java, when you pass a simple type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the method.
For example, consider the following program:

// Simple types are passed by value.

class Test {

void meth(int i, int j) {

i *= 2;

j /= 2;

}

}

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 165

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +

a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +

a + " " + b);

}

}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values
of a and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because
objects are passed by reference. Keep in mind that when you create a variable of a class
type, you are only creating a reference to an object. Thus, when you pass this reference
to a method, the parameter that receives it will refer to the same object as that referred
to by the argument. This effectively means that objects are passed to methods by use of
call-by-reference. Changes to the object inside the method do affect the object used as
an argument. For example, consider the following program:

// Objects are passed by reference.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

166 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// pass an object

void meth(Test o) {

o.a *= 2;

o.b /= 2;

}

}

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +

ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +

ob.a + " " + ob.b);

}

}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used
as an argument.

As a point of interest, when an object reference is passed to a method, the reference
itself is passed by use of call-by-value. However, since the value being passed refers to
an object, the copy of that value will still refer to the same object that its corresponding
argument does.

When a simple type is passed to a method, it is done by use of call-by-value. Objects are
passed by use of call-by-reference.

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 167

TH
E

JA
V
A

LA
N

G
U

A
G

E

168 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Returning Objects
A method can return any type of data, including class types that you create. For
example, in the following program, the incrByTen() method returns an object in
which the value of a is ten greater than it is in the invoking object.

// Returning an object.

class Test {

int a;

Test(int i) {

a = i;

}

Test incrByTen() {

Test temp = new Test(a+10);

return temp;

}

}

class RetOb {

public static void main(String args[]) {

Test ob1 = new Test(2);

Test ob2;

ob2 = ob1.incrByTen();

System.out.println("ob1.a: " + ob1.a);

System.out.println("ob2.a: " + ob2.a);

ob2 = ob2.incrByTen();

System.out.println("ob2.a after second increase: "

+ ob2.a);

}

}

The output generated by this program is shown here:

ob1.a: 2
ob2.a: 12
ob2.a after second increase: 22

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 169

TH
E

JA
V
A

LA
N

G
U

A
G

E

As you can see, each time incrByTen() is invoked, a new object is created, and a
reference to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are
dynamically allocated using new, you don’t need to worry about an object going
out-of-scope because the method in which it was created terminates. The object will
continue to exist as long as there is a reference to it somewhere in your program.
When there are no references to it, the object will be reclaimed the next time garbage
collection takes place.

Recursion
Java supports recursion. Recursion is the process of defining something in terms of
itself. As it relates to Java programming, recursion is the attribute that allows a method
to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by
use of a recursive method:

// A simple example of recursion.

class Factorial {

// this is a recursive function

int fact(int n) {

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

170 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The output from this program is shown here:

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may
seem a bit confusing. Here is how it works. When fact() is called with an argument of
1, the function returns 1; otherwise it returns the product of fact(n–1)*n. To evaluate
this expression, fact() is called with n–1. This process repeats until n equals 1 and the
calls to the method begin returning.

To better understand how the fact() method works, let’s go through a short
example. When you compute the factorial of 3, the first call to fact() will cause a
second call to be made with an argument of 2. This invocation will cause fact() to
be called a third time with an argument of 1. This call will return 1, which is then
multiplied by 2 (the value of n in the second invocation). This result (which is 2) is
then returned to the original invocation of fact() and multiplied by 3 (the original
value of n). This yields the answer, 6. You might find it interesting to insert println()
statements into fact() which will show at what level each call is and what the
intermediate answers are.

When a method calls itself, new local variables and parameters are allocated
storage on the stack, and the method code is executed with these new variables
from the start. A recursive call does not make a new copy of the method. Only
the arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack, and execution resumes at the point of the
call inside the method. Recursive methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the
iterative equivalent because of the added overhead of the additional function calls.
Many recursive calls to a method could cause a stack overrun. Because storage for
parameters and local variables is on the stack and each new call creates a new copy of
these variables, it is possible that the stack could be exhausted. If this occurs, the Java
run-time system will cause an exception. However, you probably will not have to
worry about this unless a recursive routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer
and simpler versions of several algorithms than can their iterative relatives. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
way. Some problems, especially AI-related ones, seem to lend themselves to recursive
solutions. Finally, some people seem to think recursively more easily than iteratively.

When writing recursive methods, you must have an if statement somewhere to
force the method to return without the recursive call being executed. If you don’t do
this, once you call the method, it will never return. This is a very common error in
working with recursion. Use println() statements liberally during development so that

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 171

TH
E

JA
V
A

LA
N

G
U

A
G

E

you can watch what is going on and abort execution if you see that you have made
a mistake.

Here is one more example of recursion. The recursive method printArray() prints
the first i elements in the array values.

// Another example that uses recursion.

class RecTest {

int values[];

RecTest(int i) {

values = new int[i];

}

// display array -- recursively

void printArray(int i) {

if(i==0) return;

else printArray(i-1);

System.out.println("[" + (i-1) + "] " + values[i-1]);

}

}

class Recursion2 {

public static void main(String args[]) {

RecTest ob = new RecTest(10);

int i;

for(i=0; i<10; i++) ob.values[i] = i;

ob.printArray(10);

}

}

This program generates the following output:

[0] 0
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
[6] 6

[7] 7
[8] 8
[9] 9

Introducing Access Control
As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through
encapsulation, you can control what parts of a program can access the members of a
class. By controlling access, you can prevent misuse. For example, allowing access to
data only through a well-defined set of methods, you can prevent the misuse of that
data. Thus, when correctly implemented, a class creates a “black box” which may be
used, but the inner workings of which are not open to tampering. However, the classes
that were presented earlier do not completely meet this goal. For example, consider the
Stack class shown at the end of Chapter 6. While it is true that the methods push() and
pop() do provide a controlled interface to the stack, this interface is not enforced. That
is, it is possible for another part of the program to bypass these methods and access the
stack directly. Of course, in the wrong hands, this could lead to trouble. In this section
you will be introduced to the mechanism by which you can precisely control access to
the various members of a class.

How a member can be accessed is determined by the access specifier that modifies its
declaration. Java supplies a rich set of access specifiers. Some aspects of access control
are related mostly to inheritance or packages. (A package is, essentially, a grouping of
classes.) These parts of Java’s access control mechanism will be discussed later. Here,
let’s begin by examining access control as it applies to a single class. Once you
understand the fundamentals of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected. Java also defines a
default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s begin by defining public and private. When a member of a class is modified
by the public specifier, then that member can be accessed by any other code. When a
member of a class is specified as private, then that member can only be accessed by
other members of its class. Now you can understand why main() has always been
preceded by the public specifier. It is called by code that is outside the program—that
is, by the Java run-time system. When no access specifier is used, then by default the
member of a class is public within its own package, but cannot be accessed outside of
its package. (Packages are discussed in the following chapter.)

In the classes developed so far, all members of a class have used the default access
mode, which is essentially public. However, this is not what you will typically want
to be the case. Usually, you will want to restrict access to the data members of a
class—allowing access only through methods. Also, there will be times when you
will want to define methods which are private to a class.

172 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

An access specifier precedes the rest of a member’s type specification. That is, it
must begin a member’s declaration statement. Here is an example:

public int i;

private double j;

private int myMethod(int a, char b) { // ...

To understand the effects of public and private access, consider the following
program:

/* This program demonstrates the difference between

public and private.

*/

class Test {

int a; // default access

public int b; // public access

private int c; // private access

// methods to access c

void setc(int i) { // set c's value

c = i;

}

int getc() { // get c's value

return c;

}

}

class AccessTest {

public static void main(String args[]) {

Test ob = new Test();

// These are OK, a and b may be accessed directly

ob.a = 10;

ob.b = 20;

// This is not OK and will cause an error

// ob.c = 100; // Error!

// You must access c through its methods

ob.setc(100); // OK

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 173

TH
E

JA
V
A

LA
N

G
U

A
G

E

System.out.println("a, b, and c: " + ob.a + " " +

ob.b + " " + ob.getc());

}

}

As you can see, inside the Test class, a uses default access, which for this example
is the same as specifying public. b is explicitly specified as public. Member c is given

private access. This means that it cannot be accessed by code outside of its class. So,
inside the AccessTest class, c cannot be used directly. It must be accessed through its
public methods: setc() and getc(). If you were to remove the comment symbol from
the beginning of the following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the

following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.

class Stack {

/* Now, both stck and tos are private. This means

that they cannot be accidentally or maliciously

altered in a way that would be harmful to the stack.

*/

private int stck[] = new int[10];

private int tos;

// Initialize top-of-stack

Stack() {

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

174 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 175

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

As you can see, now both stck, which holds the stack, and tos, which is the index of
the top of the stack, are specified as private. This means that they cannot be accessed or
altered except through push() and pop(). Making tos private, for example, prevents
other parts of your program from inadvertently setting it to a value that is beyond the
end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {

public static void main(String args[]) {

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

// push some numbers onto the stack

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

// these statements are not legal

// mystack1.tos = -2;

// mystack2.stck[3] = 100;

176 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

}

Although methods will usually provide access to the data defined by a class, this
does not always have to be the case. It is perfectly proper to allow an instance variable to
be public when there is good reason to do so. For example, most of the simple classes in
this book were created with little concern about controlling access to instance variables
for the sake of simplicity. However, in most real-world classes, you will need to allow
operations on data only through methods. The next chapter will return to the topic of
access control. As you will see, it is particularly important when inheritance is involved.

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
only in conjunction with an object of its class. However, it is possible to create a
member that can be used by itself, without reference to a specific instance. To create
such a member, precede its declaration with the keyword static. When a member is
declared static, it can be accessed before any objects of its class are created, and without
reference to any object. You can declare both methods and variables to be static. The
most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects
of its class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

Methods declared as static have several restrictions:

■ They can only call other static methods.

■ They must only access static data.

■ They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block which gets executed exactly once, when the class is first loaded.
The following example shows a class that has a static method, some static variables,
and a static initialization block:

// Demonstrate static variables, methods, and blocks.

class UseStatic {

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 177

TH
E

JA
V
A

LA
N

G
U

A
G

E

static int a = 3;

static int b;

static void meth(int x) {

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[]) {

meth(42);

}

}

As soon as the UseStatic class is loaded, all of the static statements are run. First,
a is set to 3, then the static block executes (printing a message), and finally, b is
initialized to a * 4 or 12. Then main() is called, which calls meth(), passing 42 to x.
The three println() statements refer to the two static variables a and b, as well as
to the local variable x.

It is illegal to refer to any instance variables inside of a static method.

Here is the output of the program:

Static block initialized.
x = 42
a = 3
b = 12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their
class followed by the dot operator. For example, if you wish to call a static method
from outside its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared.
As you can see, this format is similar to that used to call non-static methods through
object- reference variables. A static variable can be accessed in the same way—by use
of the dot operator on the name of the class. This is how Java implements a controlled
version of global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static
variable b are accessed outside of their class.

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme() {

System.out.println("a = " + a);

}

}

class StaticByName {

public static void main(String args[]) {

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}

Here is the output of this program:

a = 42
b = 99

Introducing final
A variable can be declared as final. Doing so prevents its contents from being
modified. This means that you must initialize a final variable when it is declared.
(In this usage, final is similar to const in C/C++/C#.) For example:

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

178 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 179

TH
E

JA
V
A

LA
N

G
U

A
G

E

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were
constants, without fear that a value has been changed.

It is a common coding convention to choose all uppercase identifiers for final
variables. Variables declared as final do not occupy memory on a per-instance basis.
Thus, a final variable is essentially a constant.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This second usage of final is described in
the next chapter, when inheritance is described.

Arrays Revisited
Arrays were introduced earlier in this book, before classes had been discussed. Now
that you know about classes, an important point can be made about arrays: they are
implemented as objects. Because of this, there is a special array attribute that you will
want to take advantage of. Specifically, the size of an array—that is, the number of
elements that an array can hold—is found in its length instance variable. All arrays
have this variable, and it will always hold the size of the array. Here is a program that
demonstrates this property:

// This program demonstrates the length array member.

class Length {

public static void main(String args[]) {

int a1[] = new int[10];

int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};

int a3[] = {4, 3, 2, 1};

System.out.println("length of a1 is " + a1.length);

System.out.println("length of a2 is " + a2.length);

System.out.println("length of a3 is " + a3.length);

}

}

This program displays the following output:

length of a1 is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of
length has nothing to do with the number of elements that are actually in use. It only
reflects the number of elements that the array is designed to hold.

180 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

You can put the length member to good use in many situations. For example, here
is an improved version of the Stack class. As you might recall, the earlier versions of
this class always created a ten-element stack. The following version lets you create
stacks of any size. The value of stck.length is used to prevent the stack from
overflowing.

// Improved Stack class that uses the length array member.

class Stack {

private int stck[];

private int tos;

// allocate and initialize stack

Stack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class TestStack2 {

public static void main(String args[]) {

Stack mystack1 = new Stack(5);

Stack mystack2 = new Stack(8);

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 181

TH
E

JA
V
A

LA
N

G
U

A
G

E

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Notice that the program creates two stacks: one five elements deep and the other
eight elements deep. As you can see, the fact that arrays maintain their own length
information makes it easy to create stacks of any size.

Introducing Nested and Inner Classes
It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B is known to A, but not outside of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class.

There are two types of nested classes: static and non-static. A static nested class is one
which has the static modifier applied. Because it is static, it must access the members of
its enclosing class through an object. That is, it cannot refer to members of its enclosing
class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a
non-static nested class. It has access to all of the variables and methods of its outer class
and may refer to them directly in the same way that other non-static members of the
outer class do. Thus, an inner class is fully within the scope of its enclosing class.

The following program illustrates how to define and use an inner class. The class
named Outer has one instance variable named outer_x, one instance method named
test(), and defines one inner class called Inner.

// Demonstrate an inner class.

class Outer {

int outer_x = 100;

182 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

Output from this application is shown here:

display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class
Outer. Therefore, any code in class Inner can directly access the variable outer_x. An
instance method named display() is defined inside Inner. This method displays
outer_x on the standard output stream. The main() method of InnerClassDemo
creates an instance of class Outer and invokes its test() method. That method creates
an instance of class Inner and the display() method is called.

It is important to realize that class Inner is known only within the scope of class
Outer. The Java compiler generates an error message if any code outside of class Outer
attempts to instantiate class Inner. Generalizing, a nested class is no different than any
other program element: it is known only within its enclosing scope.

As explained, an inner class has access to all of the members of its enclosing class,
but the reverse is not true. Members of the inner class are known only within the scope
of the inner class and may not be used by the outer class. For example,

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 183

TH
E

JA
V
A

LA
N

G
U

A
G

E

// This program will not compile.

class Outer {

int outer_x = 100;

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class

class Inner {

int y = 10; // y is local to Inner

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

void showy() {

System.out.println(y); // error, y not known here!

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

Here, y is declared as an instance variable of Inner. Thus it is not known outside of
that class and it cannot be used by showy().

Although we have been focusing on nested classes declared within an outer class
scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body
of a for loop, as this next program shows.

// Define an inner class within a for loop.

class Outer {

int outer_x = 100;

void test() {

for(int i=0; i<10; i++) {

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

Inner inner = new Inner();

inner.display();

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

The output from this version of the program is shown here.

display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100

While nested classes are not used in most day-to-day programming, they are
particularly helpful when handling events in an applet. We will return to the topic
of nested classes in Chapter 20. There you will see how inner classes can be used to
simplify the code needed to handle certain types of events. You will also learn about
anonymous inner classes, which are inner classes that don't have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for
Java. They were added by Java 1.1.

184 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Exploring the String Class
Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the
example programs shown toward the end of Part I. String is probably the most
commonly used class in Java’s class library. The obvious reason for this is that strings
are a very important part of programming.

The first thing to understand about strings is that every string you create is actually
an object of type String. Even string constants are actually String objects. For example,
in the statement

System.out.println("This is a String, too");

the string “This is a String, too” is a String constant. Fortunately, Java handles String
constants in the same way that other computer languages handle “normal” strings, so
you don’t have to worry about this.

The second thing to understand about strings is that objects of type String are
immutable; once a String object is created, its contents cannot be altered. While this
may seem like a serious restriction, it is not, for two reasons:

■ If you need to change a string, you can always create a new one that contains
the modifications.

■ Java defines a peer class of String, called StringBuffer, which allows strings to
be altered, so all of the normal string manipulations are still available in Java.
(StringBuffer is described in Part II of this book.)

Strings can be constructed a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is
allowed. For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.
For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing “I like Java.”
The following program demonstrates the preceding concepts:

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 185

TH
E

JA
V
A

LA
N

G
U

A
G

E

186 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Demonstrating Strings.

class StringDemo {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1 + " and " + strOb2;

System.out.println(strOb1);

System.out.println(strOb2);

System.out.println(strOb3);

}

}

The output produced by this program is shown here:

First String
Second String
First String and Second String

The String class contains several methods that you can use. Here are a few. You can
test two strings for equality by using equals(). You can obtain the length of a string by
calling the length() method. You can obtain the character at a specified index within a
string by calling charAt(). The general forms of these three methods are shown here:

boolean equals(String object)
int length()
char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.

class StringDemo2 {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1;

System.out.println("Length of strOb1: " +

strOb1.length());

System.out.println("Char at index 3 in strOb1: " +

strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");

}

}

This program generates the following output:

Length of strOb1: 12
Char at index 3 in strOb1: s
strOb1 != strOb2
strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other
type of object. For example:

// Demonstrate String arrays.

class StringDemo3 {

public static void main(String args[]) {

String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: " +

str[i]);

}

}

Here is the output from this program:

str[0]: one
str[1]: two
str[2]: three

As you will see in the following section, string arrays play an important part in
many Java programs.

C h a p t e r 7 : A C l o s e r L o o k a t M e t h o d s a n d C l a s s e s 187

TH
E

JA
V
A

LA
N

G
U

A
G

E

Using Command-Line Arguments
Sometimes you will want to pass information into a program when you run it. This
is accomplished by passing command-line arguments to main(). A command-line
argument is the information that directly follows the program’s name on the command
line when it is executed. To access the command-line arguments inside a Java program
is quite easy—they are stored as strings in the String array passed to main(). For
example, the following program displays all of the command-line arguments that it
is called with:

// Display all command-line arguments.

class CommandLine {

public static void main(String args[]) {

for(int i=0; i<args.length; i++)

System.out.println("args[" + i + "]: " +

args[i]);

}

}

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

args[0]: this
args[1]: is
args[2]: a
args[3]: test
args[4]: 100
args[5]: -1

All command-line arguments are passed as strings. You must convert numeric values to
their internal forms manually, as explained in Chapter 14.

188 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Chapter 8
Inheritance

189

Inheritance is one of the cornerstones of object-oriented programming because it
allows the creation of hierarchical classifications. Using inheritance, you can create a
general class that defines traits common to a set of related items. This class can then

be inherited by other, more specific classes, each adding those things that are unique to
it. In the terminology of Java, a class that is inherited is called a superclass. The class that
does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the instance variables and methods defined by the
superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another
by using the extends keyword. To see how, let’s begin with a short example. The
following program creates a superclass called A and a subclass called B. Notice how
the keyword extends is used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args[]) {

A superOb = new A();

190 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 191

TH
E

JA
V
A

LA
N

G
U

A
G

E

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

The output from this program is shown here:

Contents of superOb:
i and j: 10 20

Contents of subOb:
i and j: 7 8
k: 9

Sum of i, j and k in subOb:
i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This
is why subOb can access i and j and call showij(). Also, inside sum(), i and j can be
referred to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent,
stand-alone class. Being a superclass for a subclass does not mean that the superclass
cannot be used by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class
}

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. (This differs
from C++, in which you can inherit multiple base classes.) You can, as stated, create a
hierarchy of inheritance in which a subclass becomes a superclass of another subclass.
However, no class can be a superclass of itself.

Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider
the following simple class hierarchy:

/* In a class hierarchy, private members remain

private to their class.

This program contains an error and will not

compile.

*/

// Create a superclass.

class A {

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

192 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

This program will not compile because the reference to j inside the sum() method
of B causes an access violation. Since j is declared as private, it is only accessible by
other members of its own class. Subclasses have no access to it.

A class member that has been declared as private will remain private to its class. It is not
accessible by any code outside its class, including subclasses.

A More Practical Example
Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be
extended to include a fourth component called weight. Thus, the new class will contain
a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.

class Box {

double width;

double height;

double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

C h a p t e r 8 : I n h e r i t a n c e 193

TH
E

JA
V
A

LA
N

G
U

A
G

E

194 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Here, Box is extended to include weight.

class BoxWeight extends Box {

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w;

height = h;

depth = d;

weight = m;

}

}

C h a p t e r 8 : I n h e r i t a n c e 195

TH
E

JA
V
A

LA
N

G
U

A
G

E

class DemoBoxWeight {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}

}

The output from this program is shown here:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight
component. It is not necessary for BoxWeight to re-create all of the features found in
Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification. For
example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.

class ColorBox extends Box {

int color; // color of box

ColorBox(double w, double h, double d, int c) {

width = w;

height = h;

depth = d;

color = c;

}

}

Remember, once you have created a superclass that defines the general aspects of
an object, that superclass can be inherited to form specialized classes. Each subclass
simply adds its own, unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object
A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass. You will find this aspect of inheritance quite useful in a variety of
situations. For example, consider the following:

class RefDemo {

public static void main(String args[]) {

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

Box plainbox = new Box();

double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " +

weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box

System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox

does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);

}

}

196 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to
Box objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox
a reference to the weightbox object.

It is important to understand that it is the type of the reference variable—not the
type of the object that it refers to—that determines what members can be accessed. That
is, when a reference to a subclass object is assigned to a superclass reference variable,
you will have access only to those parts of the object defined by the superclass. This is
why plainbox can’t access weight even when it refers to a BoxWeight object. If you
think about it, this makes sense, because the superclass has no knowledge of what
a subclass adds to it. This is why the last line of code in the preceding fragment is
commented out. It is not possible for a Box reference to access the weight field,
because it does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

Using super
In the preceding examples, classes derived from Box were not implemented as
efficiently or as robustly as they could have been. For example, the constructor for
BoxWeight explicitly initializes the width, height, and depth fields of Box(). Not only
does this duplicate code found in its superclass, which is inefficient, but it implies that
a subclass must be granted access to these members. However, there will be times
when you will want to create a superclass that keeps the details of its implementation
to itself (that is, that keeps its data members private). In this case, there would be no
way for a subclass to directly access or initialize these variables on its own. Since
encapsulation is a primary attribute of OOP, it is not surprising that Java provides
a solution to this problem. Whenever a subclass needs to refer to its immediate
superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second
is used to access a member of the superclass that has been hidden by a member of a
subclass. Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor method defined by its superclass by use of the
following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in
the superclass. super() must always be the first statement executed inside a
subclass’ constructor.

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 8 : I n h e r i t a n c e 197

198 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To see how super() is used, consider this improved version of the
BoxWeight() class:

// BoxWeight now uses super to initialize its Box attributes.

class BoxWeight extends Box {

double weight; // weight of box

// initialize width, height, and depth using super()

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

}

Here, BoxWeight() calls super() with the parameters w, h, and d. This causes the
Box() constructor to be called, which initializes width, height, and depth using these
values. BoxWeight no longer initializes these values itself. It only needs to initialize the
value unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since
constructors can be overloaded, super() can be called using any form defined by the
superclass. The constructor executed will be the one that matches the arguments. For
example, here is a complete implementation of BoxWeight that provides constructors
for the various ways that a box can be constructed. In each case, super() is called using
the appropriate arguments. Notice that width, height, and depth have been made
private within Box.

// A complete implementation of BoxWeight.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

C h a p t e r 8 : I n h e r i t a n c e 199

TH
E

JA
V
A

LA
N

G
U

A
G

E

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

200 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 201

TH
E

JA
V
A

LA
N

G
U

A
G

E

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}

}

This program generates the following output:

Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3

Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Volume of mybox3 is -1.0
Weight of mybox3 is -1.0

Volume of myclone is 3000.0
Weight of myclone is 34.3

Volume of mycube is 27.0
Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight():

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

Notice that super() is called with an object of type BoxWeight—not of type Box.
This still invokes the constructor Box(Box ob). As mentioned earlier, a superclass
variable can be used to reference any object derived from that class. Thus, we are able
to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge
of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is
calling the constructor of its immediate superclass. Thus, super() always refers to the
superclass immediately above the calling class. This is true even in a multileveled

hierarchy. Also, super() must always be the first statement executed inside a subclass
constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to
the superclass of the subclass in which it is used. This usage has the following
general form:

super.member

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names

of a subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

202 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that
are hidden by a subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass. However, you can build hierarchies that contain as many
layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a
subclass as a superclass of another. For example, given three classes called A, B,
and C, C can be a subclass of B, which is a subclass of A. When this type of situation
occurs, each subclass inherits all of the traits found in all of its superclasses. In this
case, C inherits all aspects of B and A. To see how a multilevel hierarchy can be useful,
consider the following program. In it, the subclass BoxWeight is used as a superclass to
create the subclass called Shipment. Shipment inherits all of the traits of BoxWeight
and Box, and adds a field called cost, which holds the cost of shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

C h a p t e r 8 : I n h e r i t a n c e 203

TH
E

JA
V
A

LA
N

G
U

A
G

E

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// Add weight.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

204 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 205

TH
E

JA
V
A

LA
N

G
U

A
G

E

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

// Add shipping costs

class Shipment extends BoxWeight {

double cost;

// construct clone of an object

Shipment(Shipment ob) { // pass object to constructor

super(ob);

cost = ob.cost;

}

// constructor when all parameters are specified

Shipment(double w, double h, double d,

double m, double c) {

super(w, h, d, m); // call superclass constructor

cost = c;

}

// default constructor

Shipment() {

super();

cost = -1;

}

// constructor used when cube is created

Shipment(double len, double m, double c) {

super(len, m);

cost = c;

}

}

class DemoShipment {

public static void main(String args[]) {

Shipment shipment1 =

new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 =

new Shipment(2, 3, 4, 0.76, 1.28);

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is "

+ shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is "

+ shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

}

}

The output of this program is shown here:

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76
Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of
Box and BoxWeight, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in Shipment calls the constructor
in BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class
hierarchy, if a superclass constructor requires parameters, then all subclasses must pass
those parameters “up the line.” This is true whether or not a subclass needs parameters
of its own.

206 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

In the preceding program, the entire class hierarchy, including Box, BoxWeight, and
Shipment, is shown all in one file. This is for your convenience only. In Java, all three
classes could have been placed into their own files and compiled separately. In fact, using
separate files is the norm, not the exception, in creating class hierarchies.

When Constructors Are Called
When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy called? For example, given a subclass called B and a superclass
called A, is A’s constructor called before B’s, or vice versa? The answer is that in a class
hierarchy, constructors are called in order of derivation, from superclass to subclass.
Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used. If super() is not used, then the
default or parameterless constructor of each superclass will be executed. The following
program illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C h a p t e r 8 : I n h e r i t a n c e 207

TH
E

JA
V
A

LA
N

G
U

A
G

E

C c = new C();

}

}

The output from this program is shown here:

Inside A’s constructor
Inside B’s constructor
Inside C’s constructor

As you can see, the constructors are called in order of derivation.
If you think about it, it makes sense that constructors are executed in order of

derivation. Because a superclass has no knowledge of any subclass, any initialization it
needs to perform is separate from and possibly prerequisite to any initialization
performed by the subclass. Therefore, it must be executed first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass. When an overridden method is called from
within a subclass, it will always refer to the version of that method defined by the
subclass. The version of the method defined by the superclass will be hidden. Consider
the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

208 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 209

TH
E

JA
V
A

LA
N

G
U

A
G

E

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined
within B is used. That is, the version of show() inside B overrides the version
declared in A.

If you wish to access the superclass version of an overridden function, you can do
so by using super. For example, in this version of B, the superclass version of show() is
invoked within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

210 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the
following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().
Method overriding occurs only when the names and the type signatures of the two

methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not

// overridden.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

C h a p t e r 8 : I n h e r i t a n c e 211

TH
E

JA
V
A

LA
N

G
U

A
G

E

}

// overload show()

void show(String msg) {

System.out.println(msg + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}

}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or
name hiding) takes place.

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting
curiosity, but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here is how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the

type of the object being referred to at the time the call occurs. Thus, this determination
is made at run time. When different types of objects are referred to, different versions
of an overridden method will be called. In other words, it is the type of the object being
referred to (not the type of the reference variable) that determines which version of an
overridden method will be executed. Therefore, if a superclass contains a method that
is overridden by a subclass, then when different types of objects are referred to through
a superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object

r.callme(); // calls B's version of callme

212 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 213

TH
E

JA
V
A

LA
N

G
U

A
G

E

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

The output from the program is shown here:

Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

This program creates one superclass called A and two subclasses of it, called B
and C. Subclasses B and C override callme() declared in A. Inside the main() method,
objects of type A, B, and C are declared. Also, a reference of type A, called r, is declared.
The program then assigns a reference to each type of object to r and uses that reference to
invoke callme(). As the output shows, the version of callme() executed is determined by
the type of object being referred to at the time of the call. Had it been determined by the
type of the reference variable, r, you would see three calls to A’s callme() method.

Readers familiar with C++ or C# will recognize that overridden methods in Java are
similar to virtual functions in those languages.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass can
use directly. It also defines those methods that the derived class must implement on
its own. This allows the subclass the flexibility to define its own methods, yet still
enforces a consistent interface. Thus, by combining inheritance with overridden
methods, a superclass can define the general form of the methods that will be used
by all of its subclasses.

214 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Dynamic, run-time polymorphism is one of the most powerful mechanisms that
object-oriented design brings to bear on code reuse and robustness. The ability of
existing code libraries to call methods on instances of new classes without recompiling
while maintaining a clean abstract interface is a profoundly powerful tool.

Applying Method Overriding
Let’s look at a more practical example that uses method overriding. The following
program creates a superclass called Figure that stores the dimensions of various
two-dimensional objects. It also defines a method called area() that computes the area
of an object. The program derives two subclasses from Figure. The first is Rectangle
and the second is Triangle. Each of these subclasses overrides area() so that it returns
the area of a rectangle and a triangle, respectively.

// Using run-time polymorphism.

class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

double area() {

System.out.println("Area for Figure is undefined.");

return 0;

}

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

C h a p t e r 8 : I n h e r i t a n c e 215

TH
E

JA
V
A

LA
N

G
U

A
G

E

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class FindAreas {

public static void main(String args[]) {

Figure f = new Figure(10, 10);

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref;

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

figref = f;

System.out.println("Area is " + figref.area());

}

}

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is
possible to define one consistent interface that is used by several different, yet related,

types of objects. In this case, if an object is derived from Figure, then its area can be
obtained by calling area(). The interface to this operation is the same no matter what
type of figure is being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the
structure of a given abstraction without providing a complete implementation of every
method. That is, sometimes you will want to create a superclass that only defines a
generalized form that will be shared by all of its subclasses, leaving it to each subclass
to fill in the details. Such a class determines the nature of the methods that the
subclasses must implement. One way this situation can occur is when a superclass
is unable to create a meaningful implementation for a method. This is the case with
the class Figure used in the preceding example. The definition of area() is simply a
placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in certain
situations—such as debugging—it is not usually appropriate. You may have methods
which must be overridden by the subclass in order for the subclass to have any meaning.
Consider the class Triangle. It has no meaning if area() is not defined. In this case, you
want some way to ensure that a subclass does, indeed, override all necessary methods.
Java’s solution to this problem is the abstract method.

You can require that certain methods be overridden by subclasses by specifying
the abstract type modifier. These methods are sometimes referred to as subclasser
responsibility because they have no implementation specified in the superclass. Thus,
a subclass must override them—it cannot simply use the version defined in the
superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared

abstract. To declare a class abstract, you simply use the abstract keyword in front of the
class keyword at the beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly instantiated with the new
operator. Such objects would be useless, because an abstract class is not fully defined.
Also, you cannot declare abstract constructors, or abstract static methods. Any subclass
of an abstract class must either implement all of the abstract methods in the superclass,
or be itself declared abstract.

Here is a simple example of a class with an abstract method, followed by a class
which implements that method:

216 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 217

TH
E

JA
V
A

LA
N

G
U

A
G

E

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Notice that no objects of class A are declared in the program. As mentioned, it is
not possible to instantiate an abstract class. One other point: class A implements a
concrete method called callmetoo(). This is perfectly acceptable. Abstract classes can
include as much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used
to create object references, because Java’s approach to run-time polymorphism is
implemented through the use of superclass references. Thus, it must be possible to
create a reference to an abstract class so that it can be used to point to a subclass object.
You will see this feature put to use in the next example.

Using an abstract class, you can improve the Figure class shown earlier. Since
there is no meaningful concept of area for an undefined two-dimensional figure, the
following version of the program declares area() as abstract inside Figure. This, of
course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas {

public static void main(String args[]) {

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

218 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : I n h e r i t a n c e 219

TH
E

JA
V
A

LA
N

G
U

A
G

E

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare objects
of type Figure, since it is now abstract. And, all subclasses of Figure must override
area(). To prove this to yourself, try creating a subclass that does not override area().
You will receive a compile-time error.

Although it is not possible to create an object of type Figure, you can create a
reference variable of type Figure. The variable figref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived from
Figure. As explained, it is through superclass reference variables that overridden
methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a
named constant. This use was described in the preceding chapter. The other two uses
of final apply to inheritance. Both are examined here.

Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared
as final cannot be overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to
do so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by
a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,
thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at run
time. This is called late binding. However, since final methods cannot be overridden, a
call to one can be resolved at compile time. This is called early binding.

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede
the class declaration with final. Declaring a class as final implicitly declares all of its
methods as final, too. As you might expect, it is illegal to declare a class as both
abstract and final since an abstract class is incomplete by itself and relies upon its
subclasses to provide complete implementations.

Here is an example of a final class:

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of
Object. That is, Object is a superclass of all other classes. This means that a reference

220 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

variable of type Object can refer to an object of any other class. Also, since arrays are
implemented as classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in
every object.

Method Purpose

Object clone() Creates a new object that is the same as
the object being cloned.

boolean equals(Object object) Determines whether one object is equal to
another.

void finalize() Called before an unused object is
recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the
invoking object.

void notify() Resumes execution of a thread waiting on
the invoking object.

void notifyAll() Resumes execution of all threads waiting
on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
You may override the others. These methods are described elsewhere in this book.
However, notice two methods now: equals() and toString(). The equals() method
compares the contents of two objects. It returns true if the objects are equivalent, and
false otherwise. The toString() method returns a string that contains a description of
the object on which it is called. Also, this method is automatically called when an object
is output using println(). Many classes override this method. Doing so allows them to
tailor a description specifically for the types of objects that they create. See Chapter 13
for more information on toString().

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 8 : I n h e r i t a n c e 221

This page intentionally left blank.

Chapter 9
Packages and
Interfaces

223

This chapter examines two of Java’s most innovative features: packages and
interfaces. Packages are containers for classes that are used to keep the class name
space compartmentalized. For example, a package allows you to create a class

named List, which you can store in your own package without concern that it will
collide with some other class named List stored elsewhere. Packages are stored in a
hierarchical manner and are explicitly imported into new class definitions.

In previous chapters you have seen how methods define the interface to the data in
a class. Through the use of the interface keyword, Java allows you to fully abstract the
interface from its implementation. Using interface, you can specify a set of methods
which can be implemented by one or more classes. The interface, itself, does not
actually define any implementation. Although they are similar to abstract classes,
interfaces have an additional capability: A class can implement more than one
interface. By contrast, a class can only inherit a single superclass (abstract or
otherwise).

Packages and interfaces are two of the basic components of a Java program. In
general, a Java source file can contain any (or all) of the following four internal parts:

■ A single package statement (optional)

■ Any number of import statements (optional)

■ A single public class declaration (required)

■ Any number of classes private to the package (optional)

Only one of these—the single public class declaration—has been used in the
examples so far. This chapter will explore the remaining parts.

Packages
In the preceding chapters, the name of each example class was taken from the same
name space. This means that a unique name had to be used for each class to avoid
name collisions. After a while, without some way to manage the name space, you
could run out of convenient, descriptive names for individual classes. You also need
some way to be assured that the name you choose for a class will be reasonably
unique and not collide with class names chosen by other programmers. (Imagine
a small group of programmers fighting over who gets to use the name “Foobar” as a
class name. Or, imagine the entire Internet community arguing over who first named
a class “Espresso.”) Thankfully, Java provides a mechanism for partitioning the class
name space into more manageable chunks. This mechanism is the package. The
package is both a naming and a visibility control mechanism. You can define classes
inside a package that are not accessible by code outside that package. You can also
define class members that are only exposed to other members of the same package.
This allows your classes to have intimate knowledge of each other, but not expose
that knowledge to the rest of the world.

224 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 225

TH
E

JA
V
A

LA
N

G
U

A
G

E

Defining a Package
To create a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to the
specified package. The package statement defines a name space in which classes are
stored. If you omit the package statement, the class names are put into the default
package, which has no name. (This is why you haven’t had to worry about packages
before now.) While the default package is fine for short, sample programs, it is
inadequate for real applications. Most of the time, you will define a package for
your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a
package called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for
any classes you declare to be part of MyPackage must be stored in a directory called
MyPackage. Remember that case is significant, and the directory name must match the
package name exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java/awt/image, java\awt\image, or java:awt:image on your
UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your
package names carefully. You cannot rename a package without renaming the
directory in which the classes are stored.

226 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important
question: How does the Java run-time system know where to look for packages that
you create? The answer has two parts. First, by default, the Java run-time system uses
the current working directory as its starting point. Thus, if your package is in the current
directory, or a subdirectory of the current directory, it will be found. Second, you can
specify a directory path or paths by setting the CLASSPATH environmental variable.

For example, consider the following package specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the
program is executed from a directory immediately above MyPack, or CLASSPATH
must be set to include the path to MyPack. The first alternative is the easiest (and
doesn’t require a change to CLASSPATH), but the second alternative lets your
program find MyPack no matter what directory the program is in. Ultimately, the
choice is yours.

The easiest way to try the examples shown in this book is to simply create the
package directories below your current development directory, put the .class files into
the appropriate directories and then execute the programs from the development
directory. This is the approach assumed by the examples.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package

package MyPack;

class Balance {

String name;

double bal;

Balance(String n, double b) {

name = n;

bal = b;

}

void show() {

if(bal<0)

System.out.print("--> ");

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 227

TH
E

JA
V
A

LA
N

G
U

A
G

E

System.out.println(name + ": $" + bal);

}

}

class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++) current[i].show();

}

}

Call this file AccountBalance.java, and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this
command, or to have your CLASSPATH environmental variable set appropriately.

As explained, AccountBalance is now part of the package MyPack. This means that
it cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control
mechanism and its access specifiers. For example, you already know that access to a
private member of a class is granted only to other members of that class. Packages add
another dimension to access control. As you will see, Java provides many levels of
protection to allow fine-grained control over the visibility of variables and methods
within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name
space and scope of variables and methods. Packages act as containers for classes and

228 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

other subordinate packages. Classes act as containers for data and code. The class is
Java’s smallest unit of abstraction. Because of the interplay between classes and
packages, Java addresses four categories of visibility for class members:

■ Subclasses in the same package

■ Non-subclasses in the same package

■ Subclasses in different packages

■ Classes that are neither in the same package nor subclasses

The three access specifiers, private, public, and protected, provide a variety of
ways to produce the many levels of access required by these categories. Table 9-1 sums
up the interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit
access specification, it is visible to subclasses as well as to other classes in the same
package. This is the default access. If you want to allow an element to be seen outside
your current package, but only to classes that subclass your class directly, then declare
that element protected.

Table 9-1 applies only to members of classes. A class has only two possible access
levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code
within its same package.

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package
subclass

No Yes Yes Yes

Same package
non-subclass

No Yes Yes Yes

Different
package
subclass

No No Yes Yes

Different
package
non-subclass

No No No Yes

Table 9-1. Class Member Access

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 229

TH
E

JA
V
A

LA
N

G
U

A
G

E

An Access Example
The following example shows all combinations of the access control modifiers. This
example has two packages and five classes. Remember that the classes for the two
different packages need to be stored in directories named after their respective
packages—in this case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and
SamePackage. The first class defines four int variables in each of the legal protection
modes. The variable n is declared with the default protection, n_pri is private, n_pro is
protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance
of this class. The lines that will not compile due to access restrictions are commented
out by use of the single-line comment //. Before each of these lines is a comment listing
the places from which this level of protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one.
The third class, SamePackage, is not a subclass of Protection, but is in the same package
and also has access to all but n_pri.

This is file Protection.java:

package p1;

public class Protection {

int n = 1;

private int n_pri = 2;

protected int n_pro = 3;

public int n_pub = 4;

public Protection() {

System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file Derived.java:

package p1;

class Derived extends Protection {

Derived() {

System.out.println("derived constructor");

System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file SamePackage.java:

package p1;

class SamePackage {

SamePackage() {

Protection p = new Protection();

System.out.println("same package constructor");

System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

Following is the source code for the other package, p2. The two classes defined in
p2 cover the other two conditions which are affected by access control. The first class,
Protection2, is a subclass of p1.Protection. This grants access to all of p1.Protection’s
variables except for n_pri (because it is private) and n, the variable declared with the
default protection. Remember, the default only allows access from within the class or
the package, not extra-package subclasses. Finally, the class OtherPackage has access
to only one variable, n_pub, which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {

230 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Protection2() {

System.out.println("derived other package constructor");

// class or package only

// System.out.println("n = " + n);

// class only

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file OtherPackage.java:

package p2;

class OtherPackage {

OtherPackage() {

p1.Protection p = new p1.Protection();

System.out.println("other package constructor");

// class or package only

// System.out.println("n = " + p.n);

// class only

// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only

// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

If you wish to try these two packages, here are two test files you can use. The one
for package p1 is shown here:

// Demo package p1.

package p1;

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 231

TH
E

JA
V
A

LA
N

G
U

A
G

E

232 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// Instantiate the various classes in p1.

public class Demo {

public static void main(String args[]) {

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();

}

}

The test file for p2 is shown next:

// Demo package p2.

package p2;

// Instantiate the various classes in p2.

public class Demo {

public static void main(String args[]) {

Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();

}

}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse
classes from each other, it is easy to see why all of the built-in Java classes are stored in
packages. There are no core Java classes in the unnamed default package; all of the
standard classes are stored in some named package. Since classes within packages
must be fully qualified with their package name or names, it could become tedious to
type in the long dot-separated package path name for every class you want to use.
For this reason, Java includes the import statement to bring certain classes, or entire
packages, into visibility. Once imported, a class can be referred to directly, using only
its name. The import statement is a convenience to the programmer and is not
technically needed to write a complete Java program. If you are going to refer to a
few dozen classes in your application, however, the import statement will save a lot
of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkg1[.pkg2].(classname|*);

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 233

TH
E

JA
V
A

LA
N

G
U

A
G

E

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on
the depth of a package hierarchy, except that imposed by the file system. Finally, you
specify either an explicit classname or a star (*), which indicates that the Java compiler
should import the entire package. This code fragment shows both forms in use:

import java.util.Date;

import java.io.*;

The star form may increase compilation time—especially if you import several large
packages. For this reason it is a good idea to explicitly name the classes that you want
to use rather than importing whole packages. However, the star form has absolutely
no effect on the run-time performance or size of your classes.

All of the standard Java classes included with Java are stored in a package called
java. The basic language functions are stored in a package inside of the java package
called java.lang. Normally, you have to import every package or class that you want
to use, but since Java is useless without much of the functionality in java.lang, it is
implicitly imported by the compiler for all programs. This is equivalent to the following
line being at the top of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import
using the star form, the compiler will remain silent, unless you try to use one of the
classes. In that case, you will get a compile-time error and have to explicitly name
the class specifying its package.

Any place you use a class name, you can use its fully qualified name, which
includes its full package hierarchy. For example, this fragment uses an import
statement:

import java.util.*;

class MyDate extends Date {

}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {

}

234 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

As shown in Table 9-1, when a package is imported, only those items within the
package declared as public will be available to non-subclasses in the importing code.
For example, if you want the Balance class of the package MyPack shown earlier to be
available as a stand-alone class for general use outside of MyPack, then you will need
to declare it as public and put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its

show() method are public. This means that they can

be used by non-subclass code outside their package.

*/

public class Balance {

String name;

double bal;

public Balance(String n, double b) {

name = n;

bal = b;

}

public void show() {

if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}

}

As you can see, the Balance class is now public. Also, its constructor and its
show() method are public, too. This means that they can be accessed by any type of
code outside the MyPack package. For example, here TestBalance imports MyPack
and is then able to make use of the Balance class:

import MyPack.*;

class TestBalance {

public static void main(String args[]) {

/* Because Balance is public, you may use Balance

class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}

}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its imple-
mentation. That is, using interface, you can specify what a class must do, but not how
it does it. Interfaces are syntactically similar to classes, but they lack instance variables,
and their methods are declared without any body. In practice, this means that you can
define interfaces which don’t make assumptions about how they are implemented.
Once it is defined, any number of classes can implement an interface. Also, one class
can implement any number of interfaces.

To implement an interface, a class must create the complete set of methods defined
by the interface. However, each class is free to determine the details of its own
implementation. By providing the interface keyword, Java allows you to fully utilize
the “one interface, multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time.
Normally, in order for a method to be called from one class to another, both classes
need to be present at compile time so the Java compiler can check to ensure that the
method signatures are compatible. This requirement by itself makes for a static and
nonextensible classing environment. Inevitably in a system like this, functionality gets
pushed up higher and higher in the class hierarchy so that the mechanisms will be
available to more and more subclasses. Interfaces are designed to avoid this problem.
They disconnect the definition of a method or set of methods from the inheritance
hierarchy. Since interfaces are in a different hierarchy from classes, it is possible for
classes that are unrelated in terms of the class hierarchy to implement the same
interface. This is where the real power of interfaces is realized.

Interfaces add most of the functionality that is required for many applications which
would normally resort to using multiple inheritance in a language such as C++.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 235

TH
E

JA
V
A

LA
N

G
U

A
G

E

236 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

Here, access is either public or not used. When no access specifier is included, then
default access results, and the interface is only available to other members of the
package in which it is declared. When it is declared as public, the interface can be used
by any other code. name is the name of the interface, and can be any valid identifier.
Notice that the methods which are declared have no bodies. They end with a semicolon
after the parameter list. They are, essentially, abstract methods; there can be no default
implementation of any method specified within an interface. Each class that includes
an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final
and static, meaning they cannot be changed by the implementing class. They must also
be initialized with a constant value. All methods and variables are implicitly public if
the interface, itself, is declared as public.

Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback {

void callback(int param);

}

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and
then create the methods defined by the interface. The general form of a class that
includes the implements clause looks like this:

access class classname [extends superclass]
[implements interface [,interface...]] {

// class-body
}

Here, access is either public or not used. If a class implements more than one interface,
the interfaces are separated with a comma. If a class implements two interfaces that
declare the same method, then the same method will be used by clients of either
interface. The methods that implement an interface must be declared public. Also, the
type signature of the implementing method must match exactly the type signature
specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

}

Notice that callback() is declared using the public access specifier.

When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client
implements callback() and adds the method nonIfaceMeth():

class Client implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("callback called with " + p);

}

void nonIfaceMeth() {

System.out.println("Classes that implement interfaces " +

"may also define other members, too.");

}

}

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class
type. Any instance of any class that implements the declared interface can be referred
to by such a variable. When you call a method through one of these references, the
correct version will be called based on the actual instance of the interface being referred
to. This is one of the key features of interfaces. The method to be executed is looked up
dynamically at run time, allowing classes to be created later than the code which calls
methods on them. The calling code can dispatch through an interface without having
to know anything about the “callee.” This process is similar to using a superclass
reference to access a subclass object, as described in Chapter 8.

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 237

TH
E

JA
V
A

LA
N

G
U

A
G

E

238 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use
interfaces casually in performance-critical code.

The following example calls the callback() method via an interface reference
variable:

class TestIface {

public static void main(String args[]) {

Callback c = new Client();

c.callback(42);

}

}

The output of this program is shown here:

callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was
assigned an instance of Client. Although c can be used to access the callback()
method, it cannot access any other members of the Client class. An interface reference
variable only has knowledge of the methods declared by its interface declaration.
Thus, c could not be used to access nonIfaceMeth() since it is defined by Client but
not Callback.

While the preceding example shows, mechanically, how an interface reference
variable can access an implementation object, it does not demonstrate the polymorphic
power of such a reference. To sample this usage, first create the second implementation
of Callback, shown here:

// Another implementation of Callback.

class AnotherClient implements Callback {

// Implement Callback's interface

public void callback(int p) {

System.out.println("Another version of callback");

System.out.println("p squared is " + (p*p));

}

}

Now, try the following class:

class TestIface2 {

public static void main(String args[]) {

Callback c = new Client();

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 239

TH
E

JA
V
A

LA
N

G
U

A
G

E

AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

}

The output from this program is shown here:

callback called with 42
Another version of callback
p squared is 1764

As you can see, the version of callback() that is called is determined by the type of
object that c refers to at run time. While this is a very simple example, you will see
another, more practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods defined by
that interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {

int a, b;

void show() {

System.out.println(a + " " + b);

}

// ...

}

Here, the class Incomplete does not implement callback() and must be declared as
abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Applying Interfaces
To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list,
a binary tree, and so on. No matter how the stack is implemented, the interface to the
stack remains the same. That is, the methods push() and pop() define the interface to
the stack independently of the details of the implementation. Because the interface to a

240 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

stack is separate from its implementation, it is easy to define a stack interface, leaving it
to each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

}

The following program creates a class called FixedStack that implements a
fixed-length version of an integer stack:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack

FixedStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

if(tos==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest {

public static void main(String args[]) {

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

// push some numbers onto the stack

for(int i=0; i<5; i++) mystack1.push(i);

for(int i=0; i<8; i++) mystack2.push(i);

// pop those numbers off the stack

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

Following is another implementation of IntStack that creates a dynamic stack by
use of the same interface definition. In this implementation, each stack is constructed
with an initial length. If this initial length is exceeded, then the stack is increased in
size. Each time more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.

class DynStack implements IntStack {

private int stck[];

private int tos;

// allocate and initialize stack

DynStack(int size) {

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item) {

// if stack is full, allocate a larger stack

if(tos==stck.length-1) {

int temp[] = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++) temp[i] = stck[i];

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 241

TH
E

JA
V
A

LA
N

G
U

A
G

E

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop() {

if(tos < 0) {

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class IFTest2 {

public static void main(String args[]) {

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}

The following class uses both the FixedStack and DynStack implementations.
It does so through an interface reference. This means that calls to push() and pop()
are resolved at run time rather than at compile time.

242 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 243

TH
E

JA
V
A

LA
N

G
U

A
G

E

/* Create an interface variable and

access stacks through it.

*/

class IFTest3 {

public static void main(String args[]) {

IntStack mystack; // create an interface reference variable

DynStack ds = new DynStack(5);

FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack

// push some numbers onto the stack

for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack

for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)

System.out.println(mystack.pop());

}

}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to
ds, it uses the versions of push() and pop() defined by the DynStack implementation.
When it refers to fs, it uses the versions of push() and pop() defined by FixedStack.
As explained, these determinations are made at run time. Accessing multiple
implementations of an interface through an interface reference variable is the most
powerful way that Java achieves run-time polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables which are initialized to the desired
values. When you include that interface in a class (that is, when you “implement” the
interface), all of those variable names will be in scope as constants. This is similar to
using a header file in C/C++ to create a large number of #defined constants or const
declarations. If an interface contains no methods, then any class that includes such an
interface doesn’t actually implement anything. It is as if that class were importing the

244 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

constant variables into the class name space as final variables. The next example uses
this technique to implement an automated “decision maker”:

import java.util.Random;

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants {

Random rand = new Random();

int ask() {

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}

}

class AskMe implements SharedConstants {

static void answer(int result) {

switch(result) {

case NO:

System.out.println("No");

break;

case YES:

System.out.println("Yes");

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

case NEVER:

System.out.println("Never");

break;

}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}

Notice that this program makes use of one of Java’s standard classes: Random. This
class provides pseudorandom numbers. It contains several methods which allow you
to obtain random numbers in the form required by your program. In this example, the
method nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are
defined. Inside each class, the code refers to these constants as if each class had defined
or inherited them directly. Here is the output of a sample run of this program. Note
that the results are different each time it is run.

Later
Soon
No
Yes

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 245

TH
E

JA
V
A

LA
N

G
U

A
G

E

246 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods defined within
the interface inheritance chain. Following is an example:

// One interface can extend another.

interface A {

void meth1();

void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {

void meth3();

}

// This class must implement all of A and B

class MyClass implements B {

public void meth1() {

System.out.println("Implement meth1().");

}

public void meth2() {

System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");

}

}

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

C h a p t e r 9 : P a c k a g e s a n d I n t e r f a c e s 247

TH
E

JA
V
A

LA
N

G
U

A
G

E

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment you might want to try removing the implementation for meth1()
in MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods defined by that interface,
including any that are inherited from other interfaces.

Although the examples we’ve included in this book do not make frequent use of
packages or interfaces, both of these tools are an important part of the Java programming
environment. Virtually all real programs and applets that you write in Java will be
contained within packages. A number will probably implement interfaces as well.
It is important, therefore, that you be comfortable with their usage.

This page intentionally left blank.

Chapter 10
Exception Handling

249

This chapter examines Java’s exception-handling mechanism. An exception is an
abnormal condition that arises in a code sequence at run time. In other words,
an exception is a run-time error. In computer languages that do not support

exception handling, errors must be checked and handled manually—typically through
the use of error codes, and so on. This approach is as cumbersome as it is troublesome.
Java’s exception handling avoids these problems and, in the process, brings run-time
error management into the object-oriented world.

For the most part, exception handling has not changed since the original version
of Java. However, Java 2, version 1.4 has added a new subsystem called the chained
exception facility. This feature is described near the end of this chapter.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the error.
That method may choose to handle the exception itself, or pass it on. Either way, at
some point, the exception is caught and processed. Exceptions can be generated by the
Java run-time system, or they can be manually generated by your code. Exceptions
thrown by Java relate to fundamental errors that violate the rules of the Java language
or the constraints of the Java execution environment. Manually generated exceptions
are typically used to report some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws,
and finally. Briefly, here is how they work. Program statements that you want to
monitor for exceptions are contained within a try block. If an exception occurs within
the try block, it is thrown. Your code can catch this exception (using catch) and handle
it in some rational manner. System-generated exceptions are automatically thrown by
the Java run-time system. To manually throw an exception, use the keyword throw.
Any exception that is thrown out of a method must be specified as such by a throws
clause. Any code that absolutely must be executed before a method returns is put in
a finally block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1

}
catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2
}
// ...

250 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 251

finally {
// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable
is at the top of the exception class hierarchy. Immediately below Throwable are two
subclasses that partition exceptions into two distinct branches. One branch is headed
by Exception. This class is used for exceptional conditions that user programs should
catch. This is also the class that you will subclass to create your own custom exception
types. There is an important subclass of Exception, called RuntimeException.
Exceptions of this type are automatically defined for the programs that you write
and include things such as division by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected
to be caught under normal circumstances by your program. Exceptions of type Error
are used by the Java run-time system to indicate errors having to do with the run-time
environment, itself. Stack overflow is an example of such an error. This chapter will
not be dealing with exceptions of type Error, because these are typically created in
response to catastrophic failures that cannot usually be handled by your program.

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
intentionally causes a divide-by-zero error.

class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception. This causes the execution of Exc0
to stop, because once an exception has been thrown, it must be caught by an exception
handler and dealt with immediately. In this example, we haven’t supplied any exception
handlers of our own, so the exception is caught by the default handler provided by the

Java run-time system. Any exception that is not caught by your program will ultimately
be processed by the default handler. The default handler displays a string describing
the exception, prints a stack trace from the point at which the exception occurred, and
terminates the program.

Here is the output generated when this example is executed.

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the
type of the exception thrown is a subclass of Exception called ArithmeticException,
which more specifically describes what type of error happened. As discussed later in
this chapter, Java supplies several built-in exception types that match the various sorts
of run-time errors that can be generated.

The stack trace will always show the sequence of method invocations that led up to
the error. For example, here is another version of the preceding program that introduces
the same error but in a method separate from main():

class Exc1 {

static void subroutine() {

int d = 0;

int a = 10 / d;

}

public static void main(String args[]) {

Exc1.subroutine();

}

}

The resulting stack trace from the default exception handler shows how the entire
call stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:4)
at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to
subroutine(), which caused the exception at line 4. The call stack is quite useful for
debugging, because it pinpoints the precise sequence of steps that led to the error.

252 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 253

TH
E

JA
V
A

LA
N

G
U

A
G

E

Using try and catch
Although the default exception handler provided by the Java run-time system is useful
for debugging, you will usually want to handle an exception yourself. Doing so
provides two benefits. First, it allows you to fix the error. Second, it prevents the
program from automatically terminating. Most users would be confused (to say the
least) if your program stopped running and printed a stack trace whenever an error
occurred! Fortunately, it is quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you
want to monitor inside a try block. Immediately following the try block, include a catch
clause that specifies the exception type that you wish to catch. To illustrate how easily
this can be done, the following program includes a try block and a catch clause which
processes the ArithmeticException generated by the division-by-zero error:

class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:

Division by zero.
After catch statement.

Notice that the call to println() inside the try block is never executed. Once an
exception is thrown, program control transfers out of the try block into the catch block.
Put differently, catch is not “called,” so execution never “returns” to the try block from
a catch. Thus, the line “This will not be printed.” is not displayed. Once the catch
statement has executed, program control continues with the next line in the program
following the entire try/catch mechanism.

254 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

A try and its catch statement form a unit. The scope of the catch clause is restricted
to those statements specified by the immediately preceding try statement. A catch
statement cannot catch an exception thrown by another try statement (except in the
case of nested try statements, described shortly). The statements that are protected by
try must be surrounded by curly braces. (That is, they must be within a block.) You
cannot use try on a single statement.

The goal of most well-constructed catch clauses should be to resolve the
exceptional condition and then continue on as if the error had never happened.
For example, in the next program each iteration of the for loop obtains two random
integers. Those two integers are divided by each other, and the result is used to divide
the value 12345. The final result is put into a. If either division operation causes a
divide-by-zero error, it is caught, the value of a is set to zero, and the program
continues.

// Handle an exception and move on.

import java.util.Random;

class HandleError {

public static void main(String args[]) {

int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; i<32000; i++) {

try {

b = r.nextInt();

c = r.nextInt();

a = 12345 / (b/c);

} catch (ArithmeticException e) {

System.out.println("Division by zero.");

a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}

}

}

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception. You can display this description in a
println() statement by simply passing the exception as an argument. For example, the
catch block in the preceding program can be rewritten like this:

catch (ArithmeticException e) {

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each
divide-by-zero error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description
of an exception is valuable in other circumstances—particularly when you are
experimenting with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching
a different type of exception. When an exception is thrown, each catch statement is
inspected in order, and the first one whose type matches that of the exception is
executed. After one catch statement executes, the others are bypassed, and execution
continues after the try/catch block. The following example traps two different
exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 255

TH
E

JA
V
A

LA
N

G
U

A
G

E

This program will cause a division-by-zero exception if it is started with no command-
line parameters, since a will equal zero. It will survive the division if you provide a
command-line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the
program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.

When you use multiple catch statements, it is important to remember that
exception subclasses must come before any of their superclasses. This is because a
catch statement that uses a superclass will catch exceptions of that type plus any of
its subclasses. Thus, a subclass would never be reached if it came after its superclass.
Further, in Java, unreachable code is an error. For example, consider the following
program:

/* This program contains an error.

A subclass must come before its superclass in

a series of catch statements. If not,

unreachable code will be created and a

compile-time error will result.

*/

class SuperSubCatch {

public static void main(String args[]) {

try {

int a = 0;

int b = 42 / a;

} catch(Exception e) {

System.out.println("Generic Exception catch.");

}

/* This catch is never reached because

ArithmeticException is a subclass of Exception. */

catch(ArithmeticException e) { // ERROR - unreachable

System.out.println("This is never reached.");

256 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 257

TH
E

JA
V
A

LA
N

G
U

A
G

E

}

}

}

If you try to compile this program, you will receive an error message stating that
the second catch statement is unreachable because the exception has already been
caught. Since ArithmeticException is a subclass of Exception, the first catch statement
will handle all Exception-based errors, including ArithmeticException. This means
that the second catch statement will never execute. To fix the problem, reverse the
order of the catch statements.

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of
another try. Each time a try statement is entered, the context of that exception is
pushed on the stack. If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try statement’s catch handlers
are inspected for a match. This continues until one of the catch statements succeeds, or
until all of the nested try statements are exhausted. If no catch statement matches, then
the Java run-time system will handle the exception. Here is an example that uses
nested try statements:

// An example of nested try statements.

class NestTry {

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

As you can see, this program nests one try block within another. The program
works as follows. When you execute the program with no command-line arguments, a
divide-by-zero exception is generated by the outer try block. Execution of the program
by one command-line argument generates a divide-by-zero exception from within the
nested try block. Since the inner block does not catch this exception, it is passed on
to the outer try block, where it is handled. If you execute the program with two
command-line arguments, an array boundary exception is generated from within
the inner try block. Here are sample runs that illustrate each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two
a = 2
Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException

Nesting of try statements can occur in less obvious ways when method calls are
involved. For example, you can enclose a call to a method within a try block. Inside
that method is another try statement. In this case, the try within the method is still
nested inside the outer try block, which calls the method. Here is the previous program
recoded so that the nested try block is moved inside the method nesttry():

258 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 259

TH
E

JA
V
A

LA
N

G
U

A
G

E

/* Try statements can be implicitly nested via

calls to methods. */

class MethNestTry {

static void nesttry(int a) {

try { // nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);

}

}

public static void main(String args[]) {

try {

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

}

}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time
system. However, it is possible for your program to throw an exception explicitly,
using the throw statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such
as String and Object, cannot be used as exceptions. There are two ways you can obtain
a Throwable object: using a parameter into a catch clause, or creating one with the new
operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of the exception. If it does find a match, control
is transferred to that statement. If not, then the next enclosing try statement is
inspected, and so on. If no matching catch is found, then the default exception handler
halts the program and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

260 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up
another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then
rethrown. Here is the resulting output:

Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects.
Pay close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. All of Java’s
built-in run-time exceptions have at least two constructors: one with no parameter
and one that takes a string parameter. When the second form is used, the argument
specifies a string that describes the exception. This string is displayed when the object
is used as an argument to print() or println(). It can also be obtained by a call to
getMessage(), which is defined by Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify
this behavior so that callers of the method can guard themselves against that exception.
You do this by including a throws clause in the method’s declaration. A throws clause
lists the types of exceptions that a method might throw. This is necessary for all
exceptions, except those of type Error or RuntimeException, or any of their subclasses.
All other exceptions that a method can throw must be declared in the throws clause. If
they are not, a compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{
// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 261

Following is an example of an incorrect program that tries to throw an exception
that it does not catch. Because the program does not specify a throws clause to declare
this fact, the program will not compile.

// This program contains an error and will not compile.

class ThrowsDemo {

static void throwOne() {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

throwOne();

}

}

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try/catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne
caught java.lang.IllegalAccessException: demo

262 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 263

TH
E

JA
V
A

LA
N

G
U

A
G

E

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear
path that alters the normal flow through the method. Depending upon how the
method is coded, it is even possible for an exception to cause the method to return
prematurely. This could be a problem in some methods. For example, if a method
opens a file upon entry and closes it upon exit, then you will not want the code that
closes the file to be bypassed by the exception-handling mechanism. The finally
keyword is designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block. The finally block will
execute whether or not an exception is thrown. If an exception is thrown, the finally
block will execute even if no catch statement matches the exception. Any time a
method is about to return to the caller from inside a try/catch block, via an uncaught
exception or an explicit return statement, the finally clause is also executed just before
the method returns. This can be useful for closing file handles and freeing up any other
resources that might have been allocated at the beginning of a method with the intent
of disposing of them before returning. The finally clause is optional. However, each try
statement requires at least one catch or a finally clause.

Here is an example program that shows three methods that exit in various ways,
none without executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

In this example, procA() prematurely breaks out of the try by throwing an
exception. The finally clause is executed on the way out. procB()’s try statement is
exited via a return statement. The finally clause is executed before procB() returns. In
procC(), the try statement executes normally, without error. However, the finally
block is still executed.

If a finally block is associated with a try, the finally block will be executed upon
conclusion of the try.

Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

264 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few
have been used by the preceding examples. The most general of these exceptions
are subclasses of the standard type RuntimeException. Since java.lang is implicitly
imported into all Java programs, most exceptions derived from RuntimeException
are automatically available. Furthermore, they need not be included in any method’s
throws list. In the language of Java, these are called unchecked exceptions because the
compiler does not check to see if a method handles or throws these exceptions. The
unchecked exceptions defined in java.lang are listed in Table 10-1. Table 10-2 lists those
exceptions defined by java.lang that must be included in a method’s throws list if that
method can generate one of these exceptions and does not handle it itself. These are
called checked exceptions. Java defines several other types of exceptions that relate to its
various class libraries.

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 265

TH
E

JA
V
A

LA
N

G
U

A
G

E

Exception Meaning

ArithmeticException Arithmetic error, such as
divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an
incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a
method.

IllegalMonitorStateException Illegal monitor operation, such as
waiting on an unlocked thread.

IllegalStateException Environment or application is in
incorrect state.

IllegalThreadStateException Requested operation not compatible
with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

Table 10-1. Java’s Unchecked RuntimeException Subclasses

266 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not
implement the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an
abstract class or interface.

InterruptedException One thread has been interrupted by
another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Table 10-2. Java’s Checked Exceptions Defined in java.lang

Exception Meaning

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a
numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of
a string.

UnsupportedOperationException An unsupported operation was
encountered.

Table 10-1. Java’s Unchecked RuntimeException Subclasses (continued)

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want
to create your own exception types to handle situations specific to your applications.
This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass
of Throwable). Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course,
inherit those methods provided by Throwable. Thus, all exceptions, including those
that you create, have the methods defined by Throwable available to them. They are
shown in Table 10-3. Notice that several methods were added by Java 2, version 1.4.
You may also wish to override one or more of these methods in exception classes that
you create.

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 267

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains
a completed stack trace. This object can be
rethrown.

Throwable getCause() Returns the exception that underlies the
current exception. If there is no underlying
exception, null is returned. Added by Java 2,
version 1.4.

String getLocalizedMessage() Returns a localized description of the
exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack
trace, one element at a time as an array of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method
is found in the first element of the array.
The StackTraceElement class gives your
program access to information about each
element in the trace, such as its method
name. Added by Java 2, version 1.4

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking
exception as a cause of the invoking exception.
Returns a reference to the exception. Added
by Java 2, version 1.4

Table 10-3. The Methods Defined by Throwable

The following example declares a new subclass of Exception and then uses that
subclass to signal an error condition in a method. It overrides the toString() method,
allowing the description of the exception to be displayed using println().

// This program creates a custom exception type.

class MyException extends Exception {

private int detail;

MyException(int a) {

detail = a;

}

public String toString() {

return "MyException[" + detail + "]";

}

}

class ExceptionDemo {

static void compute(int a) throws MyException {

System.out.println("Called compute(" + a + ")");

268 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Method Description

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
elements[])

Sets the stack trace to the elements passed
in elements. This method is for specialized
applications, not normal use. Added by Java 2,
version 1.4

String toString() Returns a String object containing a
description of the exception. This method
is called by println() when outputting a
Throwable object.

Table 10-3. The Methods Defined by Throwable (continued)

if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[]) {

try {

compute(1);

compute(20);

} catch (MyException e) {

System.out.println("Caught " + e);

}

}

}

This example defines a subclass of Exception called MyException. This subclass
is quite simple: it has only a constructor plus an overloaded toString() method that
displays the value of the exception. The ExceptionDemo class defines a method
named compute() that throws a MyException object. The exception is thrown when
compute()’s integer parameter is greater than 10. The main() method sets up an
exception handler for MyException, then calls compute() with a legal value (less
than 10) and an illegal one to show both paths through the code. Here is the result:

Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

Chained Exceptions
Java 2, version 1.4 added a new feature to the exception subsystem: chained exceptions.
The chained exception feature allows you to associate another exception with an exception.
This second exception describes the cause of the first exception. For example, imagine a
situation in which a method throws an ArithmeticException because of an attempt to
divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let
the calling code know that the underlying cause was an I/O error. Chained exceptions
let you handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, Java 2, version 1.4 added two constructors and two
methods to Throwable. The constructors are shown here.

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 269

TH
E

JA
V
A

LA
N

G
U

A
G

E

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second form allows
you to specify a description at the same time that you specify a cause exception. These
two constructors have also been added to the Error, Exception, and RuntimeException
classes.

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown in Table 10-3, and are repeated here for the sake of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception.
If there is no underlying exception, null is returned. The initCause() method associates
causeExc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can’t set it again using initCause().

In general, initCause() is used to set a cause for legacy exception classes which
don’t support the two additional constructors described earlier. At the time of this
writing, most of Java’s built-in exceptions, such as ArithmeticException, do not define
the additional constructors. Thus, you will use initCause() if you need to add an
exception chain to these exceptions. When creating your own exception classes you
will want to add the two chained-exception constructors if you will be using your
exceptions in situations in which layered exceptions are possible.

Here is an example that illustrates the mechanics of handling chained exceptions.

// Demonstrate exception chaining.

class ChainExcDemo {

static void demoproc() {

// create an exception

NullPointerException e =

new NullPointerException("top layer");

// add a cause

e.initCause(new ArithmeticException("cause"));

throw e;

}

public static void main(String args[]) {

try {

demoproc();

270 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

} catch(NullPointerException e) {

// display top level exception

System.out.println("Caught: " + e);

// display cause exception

System.out.println("Original cause: " +

e.getCause());

}

}

}

The output from the program is shown here.

Caught: java.lang.NullPointerException: top layer

Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added
a cause exception, ArithmeticException. When the exception is thrown out of
demoproc(), it is caught by main(). There, the top-level exception is displayed,
followed by the underlying exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the
cause exception can, itself, have a cause. Be aware that overly long chains of exceptions
may indicate poor design.

Chained exceptions are not something that every program will need. However, in
cases in which knowledge of an underlying cause is useful, they offer an elegant solution.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs
that have many dynamic run-time characteristics. It is important to think of try, throw,
and catch as clean ways to handle errors and unusual boundary conditions in your
program’s logic. If you are like most programmers, then you probably are used to
returning an error code when a method fails. When you are programming in Java, you
should break this habit. When a method can fail, have it throw an exception. This is a
cleaner way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a
general mechanism for nonlocal branching. If you do so, it will only confuse your code
and make it hard to maintain.

C h a p t e r 1 0 : E x c e p t i o n H a n d l i n g 271

TH
E

JA
V
A

LA
N

G
U

A
G

E

This page intentionally left blank.

Chapter 11
Multithreaded
Programming

273

274 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Unlike most other computer languages, Java provides built-in support for
multithreaded programming. A multithreaded program contains two or more
parts that can run concurrently. Each part of such a program is called a thread,

and each thread defines a separate path of execution. Thus, multithreading is a
specialized form of multitasking.

You are almost certainly acquainted with multitasking, because it is supported
by virtually all modern operating systems. However, there are two distinct types
of multitasking: process-based and thread-based. It is important to understand the
difference between the two. For most readers, process-based multitasking is the more
familiar form. A process is, in essence, a program that is executing. Thus, process-based
multitasking is the feature that allows your computer to run two or more programs
concurrently. For example, process-based multitasking enables you to run the Java
compiler at the same time that you are using a text editor. In process-based multitasking,
a program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
simultaneously. For instance, a text editor can format text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based
multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes
are heavyweight tasks that require their own separate address spaces. Interprocess
communication is expensive and limited. Context switching from one process to
another is also costly. Threads, on the other hand, are lightweight. They share the same
address space and cooperatively share the same heavyweight process. Interthread
communication is inexpensive, and context switching from one thread to the next is
low cost. While Java programs make use of process-based multitasking environments,
process-based multitasking is not under the control of Java. However, multithreaded
multitasking is.

Multithreading enables you to write very efficient programs that make maximum
use of the CPU, because idle time can be kept to a minimum. This is especially
important for the interactive, networked environment in which Java operates, because
idle time is common. For example, the transmission rate of data over a network is
much slower than the rate at which the computer can process it. Even local file system
resources are read and written at a much slower pace than they can be processed by the
CPU. And, of course, user input is much slower than the computer. In a traditional,
single-threaded environment, your program has to wait for each of these tasks to finish
before it can proceed to the next one—even though the CPU is sitting idle most of the
time. Multithreading lets you gain access to this idle time and put it to good use.

If you have programmed for operating systems such as Windows 98 or Windows 2000,
then you are already familiar with multithreaded programming. However, the fact that
Java manages threads makes multithreading especially convenient, because many of
the details are handled for you.

The Java Thread Model
The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the
entire environment to be asynchronous. This helps reduce inefficiency by preventing
the waste of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an event loop with polling.
In this model, a single thread of control runs in an infinite loop, polling a single event
queue to decide what to do next. Once this polling mechanism returns with, say, a
signal that a network file is ready to be read, then the event loop dispatches control
to the appropriate event handler. Until this event handler returns, nothing else can
happen in the system. This wastes CPU time. It can also result in one part of a program
dominating the system and preventing any other events from being processed. In
general, in a singled-threaded environment, when a thread blocks (that is, suspends
execution) because it is waiting for some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example, the idle time created when a thread reads data from a network or waits for
user input can be utilized elsewhere. Multithreading allows animation loops to sleep
for a second between each frame without causing the whole system to pause. When a
thread blocks in a Java program, only the single thread that is blocked pauses. All other
threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as
soon as it gets CPU time. A running thread can be suspended, which temporarily
suspends its activity. A suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a resource. At any time, a
thread can be terminated, which halts its execution immediately. Once terminated, a
thread cannot be resumed.

Thread Priorities
Java assigns to each thread a priority that determines how that thread should be
treated with respect to the others. Thread priorities are integers that specify the relative
priority of one thread to another. As an absolute value, a priority is meaningless; a
higher-priority thread doesn’t run any faster than a lower-priority thread if it is the
only thread running. Instead, a thread’s priority is used to decide when to switch from
one running thread to the next. This is called a context switch. The rules that determine
when a context switch takes place are simple:

■ A thread can voluntarily relinquish control. This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are
examined, and the highest-priority thread that is ready to run is given the CPU.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 275

TH
E

JA
V
A

LA
N

G
U

A
G

E

276 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

■ A thread can be preempted by a higher-priority thread. In this case, a lower-priority
thread that does not yield the processor is simply preempted—no matter what
it is doing—by a higher-priority thread. Basically, as soon as a higher-priority
thread wants to run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows 98, threads of
equal priority are time-sliced automatically in round-robin fashion. For other types of
operating systems, threads of equal priority must voluntarily yield control to their peers.
If they don’t, the other threads will not run.

Problems can arise from the differences in the way that operating systems context-switch
threads of equal priority.

Synchronization
Because multithreading introduces an asynchronous behavior to your programs, there
must be a way for you to enforce synchronicity when you need it. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, you need some way to ensure that they don’t conflict with each other. That
is, you must prevent one thread from writing data while another thread is in the
middle of reading it. For this purpose, Java implements an elegant twist on an age-old
model of interprocess synchronization: the monitor. The monitor is a control mechanism
first defined by C.A.R. Hoare. You can think of a monitor as a very small box that can
hold only one thread. Once a thread enters a monitor, all other threads must wait until
that thread exits the monitor. In this way, a monitor can be used to protect a shared
asset from being manipulated by more than one thread at a time.

Most multithreaded systems expose monitors as objects that your program must
explicitly acquire and manipulate. Java provides a cleaner solution. There is no class
“Monitor”; instead, each object has its own implicit monitor that is automatically entered
when one of the object’s synchronized methods is called. Once a thread is inside a
synchronized method, no other thread can call any other synchronized method on
the same object. This enables you to write very clear and concise multithreaded code,
because synchronization support is built in to the language.

Messaging
After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you
must depend on the operating system to establish communication between threads.
This, of course, adds overhead. By contrast, Java provides a clean, low-cost way for two
or more threads to talk to each other, via calls to predefined methods that all objects

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 277

TH
E

JA
V
A

LA
N

G
U

A
G

E

have. Java’s messaging system allows a thread to enter a synchronized method on an
object, and then wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface
Java’s multithreading system is built upon the Thread class, its methods, and its
companion interface, Runnable. Thread encapsulates a thread of execution. Since
you can’t directly refer to the ethereal state of a running thread, you will deal with it
through its proxy, the Thread instance that spawned it. To create a new thread, your
program will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. The ones
that will be used in this chapter are shown here:

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and
manage threads, beginning with the one thread that all Java programs have: the
main thread.

The Main Thread
When a Java program starts up, one thread begins running immediately. This is
usually called the main thread of your program, because it is the one that is executed
when your program begins. The main thread is important for two reasons:

■ It is the thread from which other “child” threads will be spawned.

■ Often it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to it
by calling the method currentThread(), which is a public static member of Thread. Its
general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

In this program, a reference to the current thread (the main thread, in this case) is
obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread is
then redisplayed. Next, a loop counts down from five, pausing one second between
each line. The pause is accomplished by the sleep() method. The argument to sleep()
specifies the delay period in milliseconds. Notice the try/catch block around this loop.
The sleep() method in Thread might throw an InterruptedException. This would
happen if some other thread wanted to interrupt this sleeping one. This example just

278 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

prints a message if it gets interrupted. In a real program, you would need to handle
this differently. Here is the output generated by this program:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Notice the output produced when t is used as an argument to println(). This displays,
in order: the name of the thread, its priority, and the name of its group. By default, the
name of the main thread is main. Its priority is 5, which is the default value, and main
is also the name of the group of threads to which this thread belongs. A thread group is
a data structure that controls the state of a collection of threads as a whole. This process
is managed by the particular run-time environment and is not discussed in detail here.
After the name of the thread is changed, t is again output. This time, the new name of
the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the
program. The sleep() method causes the thread from which it is called to suspend
execution for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may
throw an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify
the period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short
as nanoseconds.

As the preceding program shows, you can set the name of a thread by using
setName(). You can obtain the name of a thread by calling getName() (but note
that this procedure is not shown in the program). These methods are members
of the Thread class and are declared like this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 279

TH
E

JA
V
A

LA
N

G
U

A
G

E

280 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Creating a Thread
In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

■ You can implement the Runnable interface.

■ You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable
The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on
any object that implements Runnable. To implement Runnable, a class need only
implement a single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is
important to understand that run() can call other methods, use other classes, and
declare variables, just like the main thread can. The only difference is that run()
establishes the entry point for another, concurrent thread of execution within your
program. This thread will end when run() returns.

After you create a class that implements Runnable, you will instantiate an object of
type Thread from within that class. Thread defines several constructors. The one that
we will use is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new
thread is specified by threadName.

After the new thread is created, it will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run().
The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 281

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Inside NewThread’s constructor, a new Thread object is created by the following
statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the
run() method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU, until
their loops finish. The output produced by this program is as follows:

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must
be the last thread to finish running. In fact, for some older JVMs, if the main thread
finishes before a child thread has completed, then the Java run-time system may
“hang.” The preceding program ensures that the main thread finishes last, because
the main thread sleeps for 1,000 milliseconds between iterations, but the child thread
sleeps for only 500 milliseconds. This causes the child thread to terminate earlier than
the main thread. Shortly, you will see a better way to wait for a thread to finish.

Extending Thread
The second way to create a thread is to create a new class that extends Thread,
and then to create an instance of that class. The extending class must override the
run() method, which is the entry point for the new thread. It must also call start()
to begin execution of the new thread. Here is the preceding program rewritten to
extend Thread:

282 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 283

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Create a second thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

284 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This program generates the same output as the preceding version. As you can see, the
child thread is created by instantiating an object of NewThread, which is derived
from Thread.

Notice the call to super() inside NewThread. This invokes the following form of
the Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach
At this point, you might be wondering why Java has two ways to create child threads,
and which approach is better. The answers to these questions turn on the same point.
The Thread class defines several methods that can be overridden by a derived class.
Of these methods, the only one that must be overridden is run(). This is, of course, the
same method required when you implement Runnable. Many Java programmers feel
that classes should be extended only when they are being enhanced or modified in
some way. So, if you will not be overriding any of Thread’s other methods, it is
probably best simply to implement Runnable. This is up to you, of course. However,
throughout the rest of this chapter, we will create threads by using classes that
implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the
following program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + "Interrupted");

}

System.out.println(name + " exiting.");

}

}

class MultiThreadDemo {

public static void main(String args[]) {

new NewThread("One"); // start threads

new NewThread("Two");

new NewThread("Three");

try {

// wait for other threads to end

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 285

TH
E

JA
V
A

LA
N

G
U

A
G

E

286 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and
ensures that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding
examples, this is accomplished by calling sleep() within main(), with a long enough
delay to ensure that all child threads terminate prior to the main thread. However,
this is hardly a satisfactory solution, and it also raises a larger question: How can one
thread know when another thread has ended? Fortunately, Thread provides a means
by which you can answer this question.

Two ways exist to determine whether a thread has finished. First, you can call
isAlive() on the thread. This method is defined by Thread, and its general form is
shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running.
It returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly
use to wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes
from the concept of the calling thread waiting until the specified thread joins it.
Additional forms of join() allow you to specify a maximum amount of time that
you want to wait for the specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure
that the main thread is the last to stop. It also demonstrates the isAlive() method.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 287

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Using join() to wait for threads to finish.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class DemoJoin {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: "

+ ob1.t.isAlive());

System.out.println("Thread Two is alive: "

+ ob2.t.isAlive());

System.out.println("Thread Three is alive: "

+ ob3.t.isAlive());

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here:

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1

288 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Two exiting.
Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Thread priorities are used by the thread scheduler to decide when each thread should
be allowed to run. In theory, higher-priority threads get more CPU time than lower-
priority threads. In practice, the amount of CPU time that a thread gets often depends
on several factors besides its priority. (For example, how an operating system implements
multitasking can affect the relative availability of CPU time.) A higher-priority thread
can also preempt a lower-priority one. For instance, when a lower-priority thread is
running and a higher-priority thread resumes (from sleeping or waiting on I/O, for
example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need
to be careful. Remember, Java is designed to work in a wide range of environments.
Some of those environments implement multitasking fundamentally differently than
others. For safety, threads that share the same priority should yield control once in
a while. This ensures that all threads have a chance to run under a nonpreemptive
operating system. In practice, even in nonpreemptive environments, most threads
still get a chance to run, because most threads inevitably encounter some blocking
situation, such as waiting for I/O. When this happens, the blocked thread is suspended
and other threads can run. But, if you want smooth multithreaded execution, you are
better off not relying on this. Also, some types of tasks are CPU-intensive. Such threads
dominate the CPU. For these types of threads, you want to yield control occasionally,
so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of
Thread. This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level
must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively. To return a thread to default priority, specify
NORM_PRIORITY, which is currently 5. These priorities are defined as final
variables within Thread.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 289

TH
E

JA
V
A

LA
N

G
U

A
G

E

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to
scheduling. The Windows XP/98/NT/2000 version works, more or less, as you would
expect. However, other versions may work quite differently. Most of the inconsistencies
arise when you have threads that are relying on preemptive behavior, instead of
cooperatively giving up CPU time. The safest way to obtain predictable, cross-platform
behavior with Java is to use threads that voluntarily give up control of the CPU.

The following example demonstrates two threads at different priorities, which do
not run on a preemptive platform in the same way as they run on a nonpreemptive
platform. One thread is set two levels above the normal priority, as defined by
Thread.NORM_PRIORITY, and the other is set to two levels below it. The threads
are started and allowed to run for ten seconds. Each thread executes a loop, counting
the number of iterations. After ten seconds, the main thread stops both threads. The
number of times that each thread made it through the loop is then displayed.

// Demonstrate thread priorities.

class clicker implements Runnable {

int click = 0;

Thread t;

private volatile boolean running = true;

public clicker(int p) {

t = new Thread(this);

t.setPriority(p);

}

public void run() {

while (running) {

click++;

}

}

public void stop() {

running = false;

}

public void start() {

t.start();

}

}

290 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class HiLoPri {

public static void main(String args[]) {

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

clicker hi = new clicker(Thread.NORM_PRIORITY + 2);

clicker lo = new clicker(Thread.NORM_PRIORITY - 2);

lo.start();

hi.start();

try {

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

lo.stop();

hi.stop();

// Wait for child threads to terminate.

try {

hi.t.join();

lo.t.join();

} catch (InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Low-priority thread: " + lo.click);

System.out.println("High-priority thread: " + hi.click);

}

}

The output of this program, shown as follows when run under Windows 98,
indicates that the threads did context switch, even though neither voluntarily yielded
the CPU nor blocked for I/O. The higher-priority thread got approximately 90 percent
of the CPU time.

Low-priority thread: 4408112
High-priority thread: 589626904

Of course, the exact output produced by this program depends on the speed of your
CPU and the number of other tasks running in the system. When this same program
is run under a nonpreemptive system, different results will be obtained.

One other note about the preceding program. Notice that running is preceded
by the keyword volatile. Although volatile is examined more carefully in the next

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 291

TH
E

JA
V
A

LA
N

G
U

A
G

E

chapter, it is used here to ensure that the value of running is examined each time the
following loop iterates:

while (running) {

click++;

}

Without the use of volatile, Java is free to optimize the loop in such a way that a local
copy of running is created. The use of volatile prevents this optimization, telling Java
that running may change in ways not directly apparent in the immediate code.

Synchronization
When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time. The process by
which this is achieved is called synchronization. As you will see, Java provides unique,
language-level support for it.

Key to synchronization is the concept of the monitor (also called a semaphore). A
monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread
can own a monitor at a given time. When a thread acquires a lock, it is said to have
entered the monitor. All other threads attempting to enter the locked monitor will be
suspended until the first thread exits the monitor. These other threads are said to
be waiting for the monitor. A thread that owns a monitor can reenter the same monitor
if it so desires.

If you have worked with synchronization when using other languages, such as C or
C++, you know that it can be a bit tricky to use. This is because most languages do not,
themselves, support synchronization. Instead, to synchronize threads, your programs
need to utilize operating system primitives. Fortunately, because Java implements
synchronization through language elements, most of the complexity associated with
synchronization has been eliminated.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods
Synchronization is easy in Java, because all objects have their own implicit monitor
associated with them. To enter an object’s monitor, just call a method that has been
modified with the synchronized keyword. While a thread is inside a synchronized
method, all other threads that try to call it (or any other synchronized method)
on the same instance have to wait. To exit the monitor and relinquish control of
the object to the next waiting thread, the owner of the monitor simply returns
from the synchronized method.

292 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

To understand the need for synchronization, let’s begin with a simple example that
does not use it—but should. The following program has three simple classes. The first
one, Callme, has a single method named call(). The call() method takes a String
parameter called msg. This method tries to print the msg string inside of square
brackets. The interesting thing to notice is that after call() prints the opening bracket
and the msg string, it calls Thread.sleep(1000), which pauses the current thread for
one second.

The constructor of the next class, Caller, takes a reference to an instance of the
Callme class and a String, which are stored in target and msg, respectively. The
constructor also creates a new thread that will call this object’s run() method. The
thread is started immediately. The run() method of Caller calls the call() method on
the target instance of Callme, passing in the msg string. Finally, the Synch class starts
by creating a single instance of Callme, and three instances of Caller, each with a unique
message string. The same instance of Callme is passed to each Caller.

// This program is not synchronized.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 293

TH
E

JA
V
A

LA
N

G
U

A
G

E

}

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here is the output produced by this program:

Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to
another thread. This results in the mixed-up output of the three message strings. In
this program, nothing exists to stop all three threads from calling the same method, on
the same object, at the same time. This is known as a race condition, because the three
threads are racing each other to complete the method. This example used sleep() to
make the effects repeatable and obvious. In most situations, a race condition is more
subtle and less predictable, because you can’t be sure when the context switch will
occur. This can cause a program to run right one time and wrong the next.

To fix the preceding program, you must serialize access to call(). That is, you must
restrict its access to only one thread at a time. To do this, you simply need to precede
call()’s definition with the keyword synchronized, as shown here:

class Callme {

synchronized void call(String msg) {

...

294 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

This prevents other threads from entering call() while another thread is using it.
After synchronized has been added to call(), the output of the program is as follows:

[Hello]
[Synchronized]
[World]

Any time that you have a method, or group of methods, that manipulates the
internal state of an object in a multithreaded situation, you should use the synchronized
keyword to guard the state from race conditions. Remember, once a thread enters any
synchronized method on an instance, no other thread can enter any other synchronized
method on the same instance. However, nonsynchronized methods on that instance
will continue to be callable.

The synchronized Statement
While creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, it will not work in all cases. To understand
why, consider the following. Imagine that you want to synchronize access to objects of
a class that was not designed for multithreaded access. That is, the class does not use
synchronized methods. Further, this class was not created by you, but by a third party,
and you do not have access to the source code. Thus, you can’t add synchronized to
the appropriate methods within the class. How can access to an object of this class be
synchronized? Fortunately, the solution to this problem is quite easy: You simply put
calls to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {
// statements to be synchronized
}

Here, object is a reference to the object being synchronized. A synchronized block
ensures that a call to a method that is a member of object occurs only after the current
thread has successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 295

TH
E

JA
V
A

LA
N

G
U

A
G

E

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

296 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as
the preceding example, because each thread waits for the prior one to finish before
proceeding.

Interthread Communication
The preceding examples unconditionally blocked other threads from asynchronous
access to certain methods. This use of the implicit monitors in Java objects is powerful,
but you can achieve a more subtle level of control through interprocess communication.
As you will see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing
your tasks into discrete and logical units. Threads also provide a secondary benefit:
they do away with polling. Polling is usually implemented by a loop that is used to
check some condition repeatedly. Once the condition is true, appropriate action is
taken. This wastes CPU time. For example, consider the classic queuing problem,
where one thread is producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait until the consumer is
finished before it generates more data. In a polling system, the consumer would waste
many CPU cycles while it waited for the producer to produce. Once the producer was
finished, it would start polling, wasting more CPU cycles waiting for the consumer to
finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism
via the wait(), notify(), and notifyAll() methods. These methods are implemented
as final methods in Object, so all classes have them. All three methods can be called
only from within a synchronized context. Although conceptually advanced from
a computer science perspective, the rules for using these methods are actually
quite simple:

■ wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().

■ notify() wakes up the first thread that called wait() on the same object.

■ notifyAll() wakes up all the threads that called wait() on the same object.
The highest priority thread will run first.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 297

TH
E

JA
V
A

LA
N

G
U

A
G

E

298 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notifyAll()

Additional forms of wait() exist that allow you to specify a period of time to wait.
The following sample program incorrectly implements a simple form of the

producer/consumer problem. It consists of four classes: Q, the queue that you’re
trying to synchronize; Producer, the threaded object that is producing queue entries;
Consumer, the threaded object that is consuming queue entries; and PC, the tiny
class that creates the single Q, Producer, and Consumer.

// An incorrect implementation of a producer and consumer.

class Q {

int n;

synchronized int get() {

System.out.println("Got: " + n);

return n;

}

synchronized void put(int n) {

this.n = n;

System.out.println("Put: " + n);

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 299

TH
E

JA
V
A

LA
N

G
U

A
G

E

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PC {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Although the put() and get() methods on Q are synchronized, nothing stops the
producer from overrunning the consumer, nor will anything stop the consumer from
consuming the same queue value twice. Thus, you get the erroneous output shown
here (the exact output will vary with processor speed and task load):

Put: 1
Got: 1
Got: 1
Got: 1
Got: 1
Got: 1

Put: 2
Put: 3
Put: 4
Put: 5
Put: 6
Put: 7
Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five
times in a row. Then, the producer resumed and produced 2 through 7 without letting
the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal
in both directions, as shown here:

// A correct implementation of a producer and consumer.

class Q {

int n;

boolean valueSet = false;

synchronized int get() {

if(!valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int n) {

if(valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

this.n = n;

300 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 301

TH
E

JA
V
A

LA
N

G
U

A
G

E

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PCFixed {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

302 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println("Press Control-C to stop.");

}

}

Inside get(), wait() is called. This causes its execution to suspend until the Producer
notifies you that some data is ready. When this happens, execution inside get()
resumes. After the data has been obtained, get() calls notify(). This tells Producer that
it is okay to put more data in the queue. Inside put(), wait() suspends execution until
the Consumer has removed the item from the queue. When execution resumes, the
next item of data is put in the queue, and notify() is called. This tells the Consumer
that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put: 1
Got: 1
Put: 2
Got: 2
Put: 3
Got: 3
Put: 4
Got: 4
Put: 5
Got: 5

Deadlock
A special type of error that you need to avoid that relates specifically to multitasking
is deadlock, which occurs when two threads have a circular dependency on a pair of
synchronized objects. For example, suppose one thread enters the monitor on object X
and another thread enters the monitor on object Y. If the thread in X tries to call any
synchronized method on Y, it will block as expected. However, if the thread in Y, in
turn, tries to call any synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first thread could
complete. Deadlock is a difficult error to debug for two reasons:

■ In general, it occurs only rarely, when the two threads time-slice in just the
right way.

■ It may involve more than two threads and two synchronized objects. (That is,
deadlock can occur through a more convoluted sequence of events than just
described.)

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 303

TH
E

JA
V
A

LA
N

G
U

A
G

E

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar(), respectively, which pause briefly
before trying to call a method in the other class. The main class, named Deadlock, creates
an A and a B instance, and then starts a second thread to set up the deadlock condition.
The foo() and bar() methods use sleep() as a way to force the deadlock condition
to occur.

// An example of deadlock.

class A {

synchronized void foo(B b) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered A.foo");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("A Interrupted");

}

System.out.println(name + " trying to call B.last()");

b.last();

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class B {

synchronized void bar(A a) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered B.bar");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("B Interrupted");

}

System.out.println(name + " trying to call A.last()");

a.last();

304 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class Deadlock implements Runnable {

A a = new A();

B b = new B();

Deadlock() {

Thread.currentThread().setName("MainThread");

Thread t = new Thread(this, "RacingThread");

t.start();

a.foo(b); // get lock on a in this thread.

System.out.println("Back in main thread");

}

public void run() {

b.bar(a); // get lock on b in other thread.

System.out.println("Back in other thread");

}

public static void main(String args[]) {

new Deadlock();

}

}

When you run this program, you will see the output shown here:

MainThread entered A.foo
RacingThread entered B.bar
MainThread trying to call B.last()
RacingThread trying to call A.last()

Because the program has deadlocked, you need to press CTRL-C to end the program.
You can see a full thread and monitor cache dump by pressing CTRL-BREAK on a PC . You
will see that RacingThread owns the monitor on b, while it is waiting for the monitor
on a. At the same time, MainThread owns a and is waiting to get b. This program will
never complete. As this example illustrates, if your multithreaded program locks up
occasionally, deadlock is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads
Sometimes, suspending execution of a thread is useful. For example, a separate thread
can be used to display the time of day. If the user doesn’t want a clock, then its thread
can be suspended. Whatever the case, suspending a thread is a simple matter. Once
suspended, restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between Java 2 and
earlier versions. Although you should use the Java 2 approach for all new code, you
still need to understand how these operations were accomplished for earlier Java
environments. For example, you may need to update or maintain older, legacy code.
You also need to understand why a change was made for Java 2. For these reasons, the
next section describes the original way that the execution of a thread was controlled,
followed by a section that describes the approach required for Java 2.

Suspending, Resuming, and Stopping Threads Using
Java 1.1 and Earlier

Prior to Java 2, a program used suspend() and resume(), which are methods defined by
Thread, to pause and restart the execution of a thread. They have the form shown below:

final void suspend()
final void resume()

The following program demonstrates these methods:

// Using suspend() and resume().

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 15; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(200);

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 305

TH
E

JA
V
A

LA
N

G
U

A
G

E

306 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.t.suspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.t.resume();

System.out.println("Resuming thread One");

ob2.t.suspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.t.resume();

System.out.println("Resuming thread Two");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here:

New thread: Thread[One,5,main]
One: 15
New thread: Thread[Two,5,main]
Two: 15
One: 14
Two: 14
One: 13
Two: 13
One: 12
Two: 12
One: 11
Two: 11
Suspending thread One
Two: 10
Two: 9
Two: 8
Two: 7
Two: 6
Resuming thread One
Suspending thread Two
One: 10
One: 9
One: 8
One: 7
One: 6
Resuming thread Two
Waiting for threads to finish.
Two: 5
One: 5
Two: 4
One: 4
Two: 3
One: 3
Two: 2
One: 2
Two: 1
One: 1
Two exiting.
One exiting.
Main thread exiting.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 307

TH
E

JA
V
A

LA
N

G
U

A
G

E

The Thread class also defines a method called stop() that stops a thread. Its signature
is shown here:

final void stop()

Once a thread has been stopped, it cannot be restarted using resume().

Suspending, Resuming, and Stopping Threads Using
Java 2

While the suspend(), resume(), and stop() methods defined by Thread seem to be a
perfectly reasonable and convenient approach to managing the execution of threads,
they must not be used for new Java programs. Here’s why. The suspend() method
of the Thread class is deprecated in Java 2. This was done because suspend() can
sometimes cause serious system failures. Assume that a thread has obtained locks on
critical data structures. If that thread is suspended at that point, those locks are not
relinquished. Other threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, is deprecated in Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread
is writing to a critically important data structure and has completed only part of its
changes. If that thread is stopped at that point, that data structure might be left in a
corrupted state.

Because you can’t use the suspend(), resume(), or stop() methods in Java 2 to
control a thread, you might be thinking that no way exists to pause, restart, or terminate
a thread. But, fortunately, this is not true. Instead, a thread must be designed so that the
run() method periodically checks to determine whether that thread should suspend,
resume, or stop its own execution. Typically, this is accomplished by establishing a flag
variable that indicates the execution state of the thread. As long as this flag is set to
“running,” the run() method must continue to let the thread execute. If this variable is
set to “suspend,” the thread must pause. If it is set to “stop,” the thread must terminate.
Of course, a variety of ways exist in which to write such code, but the central theme will
be the same for all programs.

The following example illustrates how the wait() and notify() methods that are
inherited from Object can be used to control the execution of a thread. This example is
similar to the program in the previous section. However, the deprecated method calls
have been removed. Let us consider the operation of this program.

The NewThread class contains a boolean instance variable named suspendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constructor. The run() method contains a synchronized statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend the
execution of the thread. The mysuspend() method sets suspendFlag to true. The

308 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

myresume() method sets suspendFlag to false and invokes notify() to wake up the
thread. Finally, the main() method has been modified to invoke the mysuspend() and
myresume() methods.

// Suspending and resuming a thread for Java 2

class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 15; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(200);

synchronized(this) {

while(suspendFlag) {

wait();

}

}

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

void mysuspend() {

suspendFlag = true;

}

synchronized void myresume() {

suspendFlag = false;

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 309

TH
E

JA
V
A

LA
N

G
U

A
G

E

310 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

notify();

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

System.out.println("Suspending thread Two");

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

The output from this program is identical to that shown in the previous section.
Later in this book, you will see more examples that use the Java 2 mechanism of thread
control. Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the
way required to ensure that run-time errors don’t occur. It is the approach that must be
used for all new code.

C h a p t e r 1 1 : M u l t i t h r e a d e d P r o g r a m m i n g 311

TH
E

JA
V
A

LA
N

G
U

A
G

E

Using Multithreading
If you are like most programmers, having multithreaded support built into the language
will be new to you. The key to utilizing this support effectively is to think concurrently
rather than serially. For example, when you have two subsystems within a program
that can execute concurrently, make them individual threads. With the careful use of
multithreading, you can create very efficient programs. A word of caution is in order,
however: If you create too many threads, you can actually degrade the performance
of your program rather than enhance it. Remember, some overhead is associated with
context switching. If you create too many threads, more CPU time will be spent changing
contexts than executing your program!

This page intentionally left blank.

Chapter 12
I/O, Applets, and
Other Topics

313

This chapter introduces two of Java’s most important packages: io and applet. The
io package supports Java’s basic I/O (input/output) system, including file I/O.
The applet package supports applets. Support for both I/O and applets comes

from Java’s core API libraries, not from language keywords. For this reason, an
in-depth discussion of these topics is found in Part II of this book, which examines
Java’s API classes. This chapter discusses the foundation of these two subsystems, so
that you can see how they are integrated into the Java language and how they fit into
the larger context of the Java programming and execution environment. This chapter
also examines the last of Java’s keywords: transient, volatile, instanceof, native,
strictfp, and assert.

I/O Basics
As you may have noticed while reading the preceding 11 chapters, not much use has
been made of I/O in the example programs. In fact, aside from print() and println(),
none of the I/O methods have been used significantly. The reason is simple: most real
applications of Java are not text-based, console programs. Rather, they are graphically
oriented applets that rely upon Java’s Abstract Window Toolkit (AWT) for interaction
with the user. Although text-based programs are excellent as teaching examples, they
do not constitute an important use for Java in the real world. Also, Java’s support for
console I/O is limited and somewhat awkward to use—even in simple example
programs. Text-based console I/O is just not very important to Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible
support for I/O as it relates to files and networks. Java’s I/O system is cohesive and
consistent. In fact, once you understand its fundamentals, the rest of the I/O system is
easy to master.

Streams
Java programs perform I/O through streams. A stream is an abstraction that either
produces or consumes information. A stream is linked to a physical device by the Java
I/O system. All streams behave in the same manner, even if the actual physical devices
to which they are linked differ. Thus, the same I/O classes and methods can be applied
to any type of device. This means that an input stream can abstract many different
kinds of input: from a disk file, a keyboard, or a network socket. Likewise, an output
stream may refer to the console, a disk file, or a network connection. Streams are a
clean way to deal with input/output without having every part of your code
understand the difference between a keyboard and a network, for example. Java
implements streams within class hierarchies defined in the java.io package.

If you are familiar with C/C++/C#, then you are already familiar with the concept of the
stream. Java’s approach to streams is loosely the same.

314 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Byte Streams and Character Streams
Java 2 defines two types of streams: byte and character. Byte streams provide a
convenient means for handling input and output of bytes. Byte streams are used, for
example, when reading or writing binary data. Character streams provide a convenient
means for handling input and output of characters. They use Unicode and, therefore,
can be internationalized. Also, in some cases, character streams are more efficient than
byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus,
all I/O was byte-oriented. Character streams were added by Java 1.1, and certain
byte-oriented classes and methods were deprecated. This is why older code that
doesn’t use character streams should be updated to take advantage of them, where
appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The
character-based streams simply provide a convenient and efficient means for handling
characters.

An overview of both byte-oriented streams and character-oriented streams is
presented in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract
classes: InputStream and OutputStream. Each of these abstract classes has several
concrete subclasses, that handle the differences between various devices, such as disk
files, network connections, and even memory buffers. The byte stream classes are
shown in Table 12-1. A few of these classes are discussed later in this section. Others
are described in Part II. Remember, to use the stream classes, you must import java.io.

The abstract classes InputStream and OutputStream define several key methods
that the other stream classes implement. Two of the most important are read() and
write(), which, respectively, read and write bytes of data. Both methods are declared
as abstract inside InputStream and OutputStream. They are overridden by derived
stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two
abstract classes, Reader and Writer. These abstract classes handle Unicode character
streams. Java has several concrete subclasses of each of these. The character stream
classes are shown in Table 12-2.

The abstract classes Reader and Writer define several key methods that the other
stream classes implement. Two of the most important methods are read() and write(),
which read and write characters of data, respectively. These methods are overridden
by derived stream classes.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 315

TH
E

JA
V
A

LA
N

G
U

A
G

E

316 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for
reading the Java standard data types

DataOutputStream An output stream that contains methods for
writing the Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and
println()

PushbackInputStream Input stream that supports one-byte “unget,”
which returns a byte to the input stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or
more input streams that will be read
sequentially, one after the other

Table 12-1. The Byte Stream Classes

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 317

TH
E

JA
V
A

LA
N

G
U

A
G

E

Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters
to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and
println()

PushbackReader Input stream that allows characters to be
returned to the input stream

Reader Abstract class that describes character
stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character
stream output

Table 12-2. The Character Stream I/O Classes

318 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This
package defines a class called System, which encapsulates several aspects of the
run-time environment. For example, using some of its methods, you can obtain the
current time and the settings of various properties associated with the system. System
also contains three predefined stream variables, in, out, and err. These fields are
declared as public and static within System. This means that they can be used by
any other part of your program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console.
System.in refers to standard input, which is the keyboard by default. System.err refers
to the standard error stream, which also is the console by default. However, these
streams may be redirected to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream. These are byte streams, even though they typically are used to
read and write characters from and to the console. As you will see, you can wrap these
within character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is
a little more complicated.

Reading Console Input
In Java 1.0, the only way to perform console input was to use a byte stream, and older
code that uses this approach persists. Today, using a byte stream to read console input
is still technically possible, but doing so may require the use of a deprecated method,
and this approach is not recommended. The preferred method of reading console input
for Java 2 is to use a character-oriented stream, which makes your program easier to
internationalize and maintain.

Java does not have a generalized console input method that parallels the standard C
function scanf() or C++ input operators.

In Java, console input is accomplished by reading from System.in. To obtain
a character-based stream that is attached to the console, you wrap System.in in a
BufferedReader object, to create a character stream. BuffereredReader supports a
buffered input stream. Its most commonly used constructor is shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader
that is being created. Reader is an abstract class. One of its concrete subclasses is
InputStreamReader, which converts bytes to characters. To obtain an InputStreamReader
object that is linked to System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for
inputStream. Putting it all together, the following line of code creates a BufferedReader
that is connected to the keyboard:

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the
console through System.in.

Reading Characters
To read a character from a BufferedReader, use read(). The version of read() that we
will be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it
as an integer value. It returns –1 when the end of the stream is encountered. As you can
see, it can throw an IOException.

The following program demonstrates read() by reading characters from the console
until the user types a “q”:

// Use a BufferedReader to read characters from the console.

import java.io.*;

class BRRead {

public static void main(String args[])

throws IOException

{

char c;

BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter characters, 'q' to quit.");

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 319

TH
E

JA
V
A

LA
N

G
U

A
G

E

// read characters

do {

c = (char) br.read();

System.out.println(c);

} while(c != 'q');

}

}

Here is a sample run:

Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

This output may look a little different from what you expected, because System.in is
line buffered, by default. This means that no input is actually passed to the program
until you press ENTER. As you can guess, this does not make read() particularly
valuable for interactive, console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of
the BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine() method;

the program reads and displays lines of text until you enter the word “stop”:

// Read a string from console using a BufferedReader.

import java.io.*;

class BRReadLines {

320 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

String str;

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

do {

str = br.readLine();

System.out.println(str);

} while(!str.equals("stop"));

}

}

The next example creates a tiny text editor. It creates an array of String objects and
then reads in lines of text, storing each line in the array. It will read up to 100 lines or
until you enter “stop”. It uses a BufferedReader to read from the console.

// A tiny editor.

import java.io.*;

class TinyEdit {

public static void main(String args[])

throws IOException

{

// create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

String str[] = new String[100];

System.out.println("Enter lines of text.");

System.out.println("Enter 'stop' to quit.");

for(int i=0; i<100; i++) {

str[i] = br.readLine();

if(str[i].equals("stop")) break;

}

System.out.println("\nHere is your file:");

TH
E

JA
V
A

LA
N

G
U

A
G

E

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 321

322 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

// display the lines

for(int i=0; i<100; i++) {

if(str[i].equals("stop")) break;

System.out.println(str[i]);

}

}

}

Here is a sample run:

Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

Writing Console Output
Console output is most easily accomplished with print() and println(), described
earlier, which are used in most of the examples in this book. These methods are defined
by the class PrintStream (which is the type of the object referenced by System.out).
Even though System.out is a byte stream, using it for simple program output is still
acceptable. However, a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write(). Thus, write() can be used to write to the
console. The simplest form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes to the stream the byte specified by byteval. Although byteval is
declared as an integer, only the low-order eight bits are written. Here is a short example
that uses write() to output the character “A” followed by a newline to the screen:

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 323

TH
E

JA
V
A

LA
N

G
U

A
G

E

// Demonstrate System.out.write().

class WriteDemo {

public static void main(String args[]) {

int b;

b = 'A';

System.out.write(b);

System.out.write('\n');

}

}

You will not often use write() to perform console output (although doing so might be
useful in some situations), because print() and println() are substantially easier to use.

The PrintWriter Class
Although using System.out to write to the console is still permissible under Java,
its use is recommended mostly for debugging purposes or for sample programs, such
as those found in this book. For real-world programs, the recommended method of
writing to the console when using Java is through a PrintWriter stream. PrintWriter
is one of the character-based classes. Using a character-based class for console output
makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream, and flushOnNewline controls
whether Java flushes the output stream every time a println() method is called. If
flushOnNewline is true, flushing automatically takes place. If false, flushing is not
automatic.

PrintWriter supports the print() and println() methods for all types including
Object. Thus, you can use these methods in the same way as they have been used with
System.out. If an argument is not a simple type, the PrintWriter methods call the
object’s toString() method and then print the result.

To write to the console by using a PrintWriter, specify System.out for the output
stream and flush the stream after each newline. For example, this line of code creates a
PrintWriter that is connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter

import java.io.*;

public class PrintWriterDemo {

public static void main(String args[]) {

PrintWriter pw = new PrintWriter(System.out, true);

pw.println("This is a string");

int i = -7;

pw.println(i);

double d = 4.5e-7;

pw.println(d);

}

}

The output from this program is shown here:

This is a string
-7
4.5E-7

Remember, there is nothing wrong with using System.out to write simple text
output to the console when you are learning Java or debugging your programs.
However, using a PrintWriter will make your real-world applications easier to
internationalize. Because no advantage is gained by using a PrintWriter in the
sample programs shown in this book, we will continue to use System.out to write
to the console.

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files.
In Java, all files are byte-oriented, and Java provides methods to read and write bytes
from and to a file. However, Java allows you to wrap a byte-oriented file stream within
a character-based object. This technique is described in Part II. This chapter examines
the basics of file I/O.

Two of the most often-used stream classes are FileInputStream and
FileOutputStream, which create byte streams linked to files. To open a file, you simply
create an object of one of these classes, specifying the name of the file as an argument to
the constructor. While both classes support additional, overridden constructors, the
following are the forms that we will be using:

324 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 325

TH
E

JA
V
A

LA
N

G
U

A
G

E

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file that you want to open. When you create
an input stream, if the file does not exist, then FileNotFoundException is thrown. For
output streams, if the file cannot be created, then FileNotFoundException is thrown.
When an output file is opened, any preexisting file by the same name is destroyed.

In earlier versions of Java, FileOutputStream() threw an IOException when an
output file could not be created. This was changed by Java 2.

When you are done with a file, you should close it by calling close(). It is defined
by both FileInputStream and FileOutputStream, as shown here:

void close() throws IOException

To read from a file, you can use a version of read() that is defined within
FileInputStream. The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an
integer value. read() returns –1 when the end of the file is encountered. It can throw an
IOException.

The following program uses read() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Note the try/catch blocks
that handle the two errors that might occur when this program is used—the specified
file not being found or the user forgetting to include the name of the file. You can use
this same approach whenever you use command-line arguments.

/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,

use the following command line.

java ShowFile TEST.TXT

*/

import java.io.*;

326 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

class ShowFile {

public static void main(String args[])

throws IOException

{

int i;

FileInputStream fin;

try {

fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {

System.out.println("File Not Found");

return;

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: ShowFile File");

return;

}

// read characters until EOF is encountered

do {

i = fin.read();

if(i != -1) System.out.print((char) i);

} while(i != -1);

fin.close();

}

}

To write to a file, you will use the write() method defined by FileOutputStream.
Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared
as an integer, only the low-order eight bits are written to the file. If an error occurs
during writing, an IOException is thrown. The next example uses write() to copy a
text file:

/* Copy a text file.

To use this program, specify the name

of the source file and the destination file.

For example, to copy a file called FIRST.TXT

to a file called SECOND.TXT, use the following

command line.

java CopyFile FIRST.TXT SECOND.TXT

*/

import java.io.*;

class CopyFile {

public static void main(String args[])

throws IOException

{

int i;

FileInputStream fin;

FileOutputStream fout;

try {

// open input file

try {

fin = new FileInputStream(args[0]);

} catch(FileNotFoundException e) {

System.out.println("Input File Not Found");

return;

}

// open output file

try {

fout = new FileOutputStream(args[1]);

} catch(FileNotFoundException e) {

System.out.println("Error Opening Output File");

return;

}

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Usage: CopyFile From To");

return;

}

// Copy File

try {

do {

i = fin.read();

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 327

TH
E

JA
V
A

LA
N

G
U

A
G

E

if(i != -1) fout.write(i);

} while(i != -1);

} catch(IOException e) {

System.out.println("File Error");

}

fin.close();

fout.close();

}

}

Notice the way that potential I/O errors are handled in this program and in the
preceding ShowFile program. Unlike some other computer languages, including C
and C++, which use error codes to report file errors, Java uses its exception handling
mechanism. Not only does this make file handling cleaner, but it also enables Java to
easily differentiate the end-of-file condition from file errors when input is being
performed. In C/C++, many input functions return the same value when an error
occurs and when the end of the file is reached. (That is, in C/C++, an EOF condition
often is mapped to the same value as an input error.) This usually means that the
programmer must include extra program statements to determine which event actually
occurred. In Java, errors are passed to your program via exceptions, not by values
returned by read(). Thus, when read() returns –1, it means only one thing: the end of
the file has been encountered.

Applet Fundamentals
All of the preceding examples in this book have been Java applications. However,
applications constitute only one class of Java programs. Another type of program is the
applet. As mentioned in Chapter 1, applets are small applications that are accessed on an
Internet server, transported over the Internet, automatically installed, and run as part of a
Web document. After an applet arrives on the client, it has limited access to resources, so
that it can produce an arbitrary multimedia user interface and run complex computations
without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part
II, when the applet package is examined. However, the fundamentals connected to the
creation of an applet are presented here, because applets are not structured in the same
way as the programs that have been used thus far. As you will see, applets differ from
applications in several key areas.

Let’s begin with the simple applet shown here:

328 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

g.drawString("A Simple Applet", 20, 20);

}

}

This applet begins with two import statements. The first imports the Abstract Window
Toolkit (AWT) classes. Applets interact with the user through the AWT, not through the
console-based I/O classes. The AWT contains support for a window-based, graphical
interface. As you might expect, the AWT is quite large and sophisticated, and a complete
discussion of it consumes several chapters in Part II of this book. Fortunately, this simple
applet makes very limited use of the AWT. The second import statement imports the
applet package, which contains the class Applet. Every applet that you create must be a
subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be
declared as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT
and must be overridden by the applet. paint() is called each time that the applet
must redisplay its output. This situation can occur for several reasons. For example,
the window in which the applet is running can be overwritten by another window and
then uncovered. Or, the applet window can be minimized and then restored. paint() is
also called when the applet begins execution. Whatever the cause, whenever the applet
must redraw its output, paint() is called. The paint() method has one parameter of
type Graphics. This parameter contains the graphics context, which describes the
graphics environment in which the applet is running. This context is used whenever
output to the applet is required.

Inside paint() is a call to drawString(), which is a member of the Graphics class.
This method outputs a string beginning at the specified X,Y location. It has the
following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString() in the applet causes the message “A Simple
Applet” to be displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike Java programs, applets
do not begin execution at main(). In fact, most applets don’t even have a main() method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 329

TH
E

JA
V
A

LA
N

G
U

A
G

E

After you enter the source code for SimpleApplet, compile in the same way that
you have been compiling programs. However, running SimpleApplet involves a
different process. In fact, there are two ways in which you can run an applet:

■ Executing the applet within a Java-compatible Web browser.

■ Using an applet viewer, such as the standard SDK tool, appletviewer. An
applet viewer executes your applet in a window. This is generally the fastest
and easiest way to test your applet.

Each of these methods is described next.
To execute an applet in a Web browser, you need to write a short HTML text file

that contains the appropriate APPLET tag. Here is the HTML file that executes
SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>

</applet>

The width and height statements specify the dimensions of the display area used
by the applet. (The APPLET tag contains several other options that are examined more
closely in Part II.) After you create this file, you can execute your browser and then
load this file, which causes SimpleApplet to be executed.

To execute SimpleApplet with an applet viewer, you may also execute the HTML
file shown earlier. For example, if the preceding HTML file is called RunApp.html,
then the following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing.
Simply include a comment at the head of your Java source code file that contains the
APPLET tag. By doing so, your code is documented with a prototype of the necessary
HTML statements, and you can test your compiled applet merely by starting the applet
viewer with your Java source code file. If you use this method, the SimpleApplet
source file looks like this:

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=200 height=60>

</applet>

*/

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

330 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

TH
E

JA
V
A

LA
N

G
U

A
G

E

g.drawString("A Simple Applet", 20, 20);

}

}

In general, you can quickly iterate through applet development by using these
three steps:

1. Edit a Java source file.

2. Compile your program.

3. Execute the applet viewer, specifying the name of your applet’s source file. The
applet viewer will encounter the APPLET tag within the comment and execute
your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is
shown in the following illustration:

While the subject of applets is more fully discussed later in this book, here are the
key points that you should remember now:

■ Applets do not need a main() method.

■ Applets must be run under an applet viewer or a Java-compatible browser.

■ User I/O is not accomplished with Java’s stream I/O classes. Instead, applets
use the interface provided by the AWT.

The transient and volatile Modifiers
Java defines two interesting type modifiers: transient and volatile. These modifiers are
used to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist
when an object is stored. For example:

class T {

transient int a; // will not persist

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 331

int b; // will persist

}

Here, if an object of type T is written to a persistent storage area, the contents of a
would not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can
be changed unexpectedly by other parts of your program. One of these situations
involves multithreaded programs. (You saw an example of this in Chapter 11.) In a
multithreaded program, sometimes, two or more threads share the same instance
variable. For efficiency considerations, each thread can keep its own, private copy of
such a shared variable. The real (or master) copy of the variable is updated at various
times, such as when a synchronized method is entered. While this approach works
fine, it may be inefficient at times. In some cases, all that really matters is that the
master copy of a variable always reflects its current state. To ensure this, simply specify
the variable as volatile, which tells the compiler that it must always use the master
copy of a volatile variable (or, at least, always keep any private copies up to date with
the master copy, and vice versa). Also, accesses to the master variable must be executed
in the precise order in which they are executed on any private copy.

volatile in Java has, more or less, the same meaning that it has in C/C++/C#.

Using instanceof
Sometimes, knowing the type of an object during run time is useful. For example, you
might have one thread of execution that generates various types of objects, and another
thread that processes these objects. In this situation, it might be useful for the processing
thread to know the type of each object when it receives it. Another situation in which
knowledge of an object’s type at run time is important involves casting. In Java, an
invalid cast causes a run-time error. Many invalid casts can be caught at compile time.
However, casts involving class hierarchies can produce invalid casts that can be detected
only at run time. For example, a superclass called A can produce two subclasses, called B
and C. Thus, casting a B object into type A or casting a C object into type A is legal, but
casting a B object into type C (or vice versa) isn’t legal. Because an object of type A can
refer to objects of either B or C, how can you know, at run time, what type of object is
actually being referred to before attempting the cast to type C? It could be an object of
type A, B, or C. If it is an object of type B, a run-time exception will be thrown. Java
provides the run-time operator instanceof to answer this question.

The instanceof operator has this general form:

object instanceof type

332 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 333

TH
E

JA
V
A

LA
N

G
U

A
G

E

Here, object is an instance of a class, and type is a class type. If object is of the specified
type or can be cast into the specified type, then the instanceof operator evaluates to
true. Otherwise, its result is false. Thus, instanceof is the means by which your
program can obtain run-time type information about an object.

The following program demonstrates instanceof:

// Demonstrate instanceof operator.

class A {

int i, j;

}

class B {

int i, j;

}

class C extends A {

int k;

}

class D extends A {

int k;

}

class InstanceOf {

public static void main(String args[]) {

A a = new A();

B b = new B();

C c = new C();

D d = new D();

if(a instanceof A)

System.out.println("a is instance of A");

if(b instanceof B)

System.out.println("b is instance of B");

if(c instanceof C)

System.out.println("c is instance of C");

if(c instanceof A)

System.out.println("c can be cast to A");

if(a instanceof C)

System.out.println("a can be cast to C");

334 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

System.out.println();

// compare types of derived types

A ob;

ob = d; // A reference to d

System.out.println("ob now refers to d");

if(ob instanceof D)

System.out.println("ob is instance of D");

System.out.println();

ob = c; // A reference to c

System.out.println("ob now refers to c");

if(ob instanceof D)

System.out.println("ob can be cast to D");

else

System.out.println("ob cannot be cast to D");

if(ob instanceof A)

System.out.println("ob can be cast to A");

System.out.println();

// all objects can be cast to Object

if(a instanceof Object)

System.out.println("a may be cast to Object");

if(b instanceof Object)

System.out.println("b may be cast to Object");

if(c instanceof Object)

System.out.println("c may be cast to Object");

if(d instanceof Object)

System.out.println("d may be cast to Object");

}

}

The output from this program is shown here:

a is instance of A
b is instance of B
c is instance of C
c can be cast to A

ob now refers to d
ob is instance of D

ob now refers to c
ob cannot be cast to D
ob can be cast to A

a may be cast to Object
b may be cast to Object
c may be cast to Object
d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you’re
writing generalized routines that operate on objects of a complex class hierarchy.

strictfp
Java 2 added a new keyword to the Java language, called strictfp. With the creation
of Java 2, the floating point computation model was relaxed slightly to make certain
floating point computations faster for certain processors, such as the Pentium.
Specifically, the new model does not require the truncation of certain intermediate
values that occur during a computation. By modifying a class or a method with
strictfp, you ensure that floating point calculations (and thus all truncations) take
place precisely as they did in earlier versions of Java. The truncation affects only the
exponent of certain operations. When a class is modified by strictfp, all the methods in
the class are also modified by strictfp automatically.

For example, the following fragment tells Java to use the original floating point
model for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very
small class of problems.

Native Methods
Although it is rare, occasionally, you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the
CPU and environment in which you are working—that is, native code. For example,
you may want to call a native code subroutine to achieve faster execution time. Or, you
may want to use a specialized, third-party library, such as a statistical package.

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 335

TH
E

JA
V
A

LA
N

G
U

A
G

E

336 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

However, because Java programs are compiled to bytecode, which is then interpreted
(or compiled on-the-fly) by the Java run-time system, it would seem impossible to call
a native code subroutine from within your Java program. Fortunately, this conclusion
is false. Java provides the native keyword, which is used to declare native code methods.
Once declared, these methods can be called from inside your Java program just as you
call any other Java method.

To declare a native method, precede the method with the native modifier, but do
not define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a
rather complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code
with a Java program is called the Java Native Interface (JNI). This methodology was
created by Java 1.1 and then expanded and enhanced by Java 2. (Java 1.0 used a
different approach, which is now completely outdated.) A detailed description of the
JNI is beyond the scope of this book, but the following description provides sufficient
information for most applications.

The precise steps that you need to follow will vary between different Java environments
and versions. This also depends on the language that you are using to implement the
native method. The following discussion assumes a Windows 95/98/XP/NT/2000
environment. The language used to implement the native method is C.

The easiest way to understand the process is to work through an example. To
begin, enter the following short program, which uses a native method called test():

// A simple example that uses a native method.

public class NativeDemo {

int i;

public static void main(String args[]) {

NativeDemo ob = new NativeDemo();

ob.i = 10;

System.out.println("This is ob.i before the native method:" +

ob.i);

ob.test(); // call a native method

System.out.println("This is ob.i after the native method:" +

ob.i);

}

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 337

TH
E

JA
V
A

LA
N

G
U

A
G

E

// declare native method

public native void test() ;

// load DLL that contains static method

static {

System.loadLibrary("NativeDemo");

}

}

Notice that the test() method is declared as native and has no body. This is the method
that we will implement in C shortly. Also notice the static block. As explained earlier in
this book, a static block is executed only once, when your program begins execution
(or, more precisely, when its class is first loaded). In this case, it is used to load the
dynamic link library that contains the native implementation of test(). (You will see
how to create this library soon.)

The library is loaded by the loadLibrary() method, which is part of the System
class. This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you
must use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the
SDK.) You will include NativeDemo.h in your implementation of test(). To produce
NativeDemo.h, use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class NativeDemo */

#ifndef _Included_NativeDemo

#define _Included_NativeDemo

#ifdef _ _cplusplus

extern "C" {

#endif

/*

* Class: NativeDemo

* Method: test

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_NativeDemo_test

(JNIEnv *, jobject);

#ifdef _ _cplusplus

}

#endif

#endif

Pay special attention to the following line, which defines the prototype for the
test() function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the
name of the native function that you implement. That is, instead of creating a C function
called test(), you will create one called Java_NativeDemo_test(). The NativeDemo
component of the prefix is added because it identifies the test() method as being part of the
NativeDemo class. Remember, another class may define its own native test() method that
is completely different from the one declared by NativeDemo. Including the class name in
the prefix provides a way to differentiate between differing versions. As a general rule,
native functions will be given a name whose prefix includes the name of the class in which
they are declared.

After producing the necessary header file, you can write your implementation of
test() and store it in a file named NativeDemo.c:

/* This file contains the C version of the

test() method.

*/

#include <jni.h>

#include "NativeDemo.h"

#include <stdio.h>

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *env, jobject obj)

{

jclass cls;

jfieldID fid;

jint i;

338 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 339

TH
E

JA
V
A

LA
N

G
U

A
G

E

printf("Starting the native method.\n");

cls = (*env)->GetObjectClass(env, obj);

fid = (*env)->GetFieldID(env, cls, "i", "I");

if(fid == 0) {

printf("Could not get field id.\n");

return;

}

i = (*env)->GetIntField(env, obj, fid);

printf("i = %d\n", i);

(*env)->SetIntField(env, obj, fid, 2*i);

printf("Ending the native method.\n");

}

Notice that this file includes jni.h, which contains interfacing information. This file is
provided by your Java compiler. The header file NativeDemo.h was created by
javah, earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that
has information about the class NativeDemo. The GetFieldID() method returns a C
structure with information about the field named “i” for the class. GetIntField()
retrieves the original value of that field. SetIntField() stores an updated value in that
field. (See the file jni.h for additional methods that handle other types of data.)

After creating NativeDemo.c, you must compile it and create a DLL. To do this by
using the Microsoft C/C++ compiler, use the following command line. (You might
need to specifiy the path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

This is ob.i before the native method: 10
Starting the native method.
i = 10
Ending the native method.
This is ob.i after the native method: 20

The specifics surrounding the use of native are implementation- and environment-
dependent. Furthermore, the specific manner in which you interface to Java code is
subject to change. You must consult the documentation that accompanies your Java
development system for details on native methods.

Problems with Native Methods
Native methods seem to offer great promise, because they enable you to gain access to
your existing base of library routines, and they offer the possibility of faster run-time
execution. But native methods also introduce two significant problems:

■ Potential security risk Because a native method executes actual machine code, it
can gain access to any part of the host system. That is, native code is not confined
to the Java execution environment. This could allow a virus infection, for example.
For this reason, applets cannot use native methods. Also, the loading of DLLs can
be restricted, and their loading is subject to the approval of the security manager.

■ Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating-system-dependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java
programs nonportable and pose significant security risks.

Using assert
Java 2, version 1.4 added a new keyword to Java: assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always
return a positive integer value. You might test this by asserting that the return value is
greater than zero using an assert statement. At run time, if the condition actually is true,
no other action takes place. However, if the condition is false, then an AssertionError is
thrown. Assertions are often used during testing to verify that some expected condition
is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here.

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is
true, then the assertion is true and no other action takes place. If the condition is false,
then the assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here.

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This
value is converted to its string format and displayed if an assertion fails. Typically, you
will specify a string for expr, but any non-void expression is allowed as long as it
defines a reasonable string conversion.

340 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

Here is an example that uses assert. It verifies that the return value of getnum()
is positive.

// Demonstrate assert.

class AssertDemo {

static int val = 3;

// Return an integer.

static int getnum() {

return val--;

}

public static void main(String args[])

{

int n;

for(int i=0; i < 10; i++) {

n = getnum();

assert n > 0; // will fail when n is 0

System.out.println("n is " + n);

}

}

}

Programs that use assert must be compiled using the -source 1.4 option. For example,
to compile the preceding program, use this line:

javac -source 1.4 AssertDemo.java

To enable assertion checking at run time, you must specify the -ea option. For example,
to enable assertions for AssertDemo, execute it using this line.

java -ea AssertDemo

After compiling and running as just described, the program creates the following
output.

n is 3
n is 2
n is 1

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 341

TH
E

JA
V
A

LA
N

G
U

A
G

E

Exception in thread "main" java.lang.AssertionError
at AssertDemo.main(AssertDemo.java:17)

In main(), repeated calls are made to the method getnum(), which returns an integer
value. The return value of getnum() is assigned to n and then tested using this assert
statement.

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this
happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For
example, if you substitute

assert n > 0 : "n is negative!";

for the assertion in the preceding program, then the following ouptut will be generated.

n is 3

n is 2

n is 1

Exception in thread "main" java.lang.AssertionError: n is negative!

at AssertDemo.main(AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on
them to perform any action actually required by the program. The reason is that
normally, released code will be run with assertions disabled. For example, consider
this variation of the preceding program.

// A poor way to use assert!!!

class AssertDemo {

// get a random number generator

static int val = 3;

// Return an integer.

static int getnum() {

return val--;

}

public static void main(String args[])

342 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

{

int n = 0;

for(int i=0; i < 10; i++) {

assert (n = getnum()) > 0; // This is not a good idea!

System.out.println("n is " + n);

}

}

}

In this version of the program, the call to getnum() is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when
assertions are disabled because the call to getnum() will never be executed! In fact, n
must now be initialized, because the compiler will recognize that it might not be
assigned a value by the assert statement.

Assertions are a good addition to Java because they streamline the type of error
checking that is common during development. For example, prior to assert, if you
wanted to verify that n was positive in the preceding program, you had to use a
sequence of code similar to this:

if(n < 0) {

System.out.println("n is negative!");

return; // or throw an exception

}

With assert, you need only one line of code. Furthermore, you don’t have to remove
the assert statements from your released code.

Assertion Enabling and Disabling Options
When executing code, you can disable assertions by using the -da option. You can
enable or disable a specific package by specifying its name after the -ea or -da option.
For example, to enable assertions in a package called MyPack, use

-ea:MyPack

To disable assertions in MyPack use

-da:MyPack

C h a p t e r 1 2 : I / O , A p p l e t s , a n d O t h e r T o p i c s 343

TH
E

JA
V
A

LA
N

G
U

A
G

E

To enable or disable all subpackages of a package, follow the package name with three
dots. For example,

-ea:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually.

-ea:AssertDemo

344 J a v a ™ 2 : T h e C o m p l e t e R e f e r e n c e

