DATA STRUCTURES LABORATORY-CS2208
 IMPLEMENTATION OF A LINKED LIST

AIM:-

To implement a linked list and to perform Insert and Delete operations on it.

ALGORITHM:-

Step 1 : Start the process.

Step 2: Initialize and declare variables.

Step 3: Enter the choice. INSERT / DELETE.

Step 4: If choice is INSERT then

a) Enter the element to be inserted.

b) Get a new node and set DATA[NEWNODE] = ITEM.

c) Find the node after which the new node is to be inserted.

d) Adjust the link fields.

e) Print the linked list after insertion.

Step 5: If choice is DELETE then

a) Enter the element to be deleted.

b) Find the node containing the element (LOC) and its preceding node (PAR).

c) Set ITEM = DATA[LOC] and delete the node LOC.

d) Adjust the link fields so that PAR points to the next element. ie

LINK[PAR] = LINK [LOC].

e) Print the linked list after deletion.

Step 6: Stop the process.

IMPLEMENTATION OF A DOUBLY LINKED LIST

AIM:-

To implement a Doubly linked list and to perform Insert and Delete operations on it.

ALGORITHM:-

Step 1 : Start the process.

Step 2: Initialize and declare variables.

Step 3: Enter the choice. INSERT / DELETE.

Step 4: If choice is INSERT then

f) Enter the element to be inserted.

g) Get a new node and set NEWNODE->data = ITEM.

h) Find the before and after node to which the new node is to be inserted.

i) Adjust the link fields as

Newnode->flink=prev->flink

Prev->flink->blink=newnode

Prev->flink=newnode

Newnode->blink=prev
j) Print the linked list after insertion.

Step 5: If choice is DELETE then

f) Enter the element to be deleted.

g) Find the node containing the element (LOC) and its preceding node (PAR).

h) Set ITEM = LOC->data and delete the node LOC.

i) Adjust the link fields so that PAR points to the next element. ie

PAR->flink=LOC->flink.
LOC->flink->blink=PAR
j) Print the linked list after deletion.

Step 6: Stop the process.

CONVERSION OF INFIX TO POSTFIX EXPRESSION

 Aim:-
To Convert the infix expression to postfix expression using Stack.
Algorithm:-
Step 1. Scan the Infix string from left to right.
Step 2. Initialise an empty stack.
Step 3. If the scannned character is an operand, add it to the Postfix string. If the scanned character is an operator and if the stack is empty Push the character to stack.

· If the scanned character is an Operand and the stack is not empty, compare the precedence of the character with the element on top of the stack (topStack). If topStack has higher precedence over the scanned character Pop the stack else Push the scanned character to stack. Repeat this step as long as stack is not empty and topStack has precedence over the character.

Repeat this step till all the characters are scanned.
 Step 4. (After all characters are scanned, we have to add any character that the stack may have to the Postfix string.) If stack is not empty add topStack to Postfix string and Pop the stack. Repeat this step as long as stack is not empty.
 Step 5. Return the Postfix string.

 IMPLEMENTATION OF TREE TRAVERSALS

AIM:-

To implement tree traversals using linked list.

ALGORITHM:-

Step 1: Start the process.

Step 2: Initialize and declare variables.

Step 3: Enter the choice. Inorder / Preorder / Postorder.

Step 4: If choice is Inorder then

a) Traverse the left subtree in inorder.

b) Process the root node.

c) Traverse the right subtree in inorder.

Step 5: If choice is Preorder then

a) Process the root node.

b) Traverse the left subtree in preorder.

c) Traverse the right subtree in preorder.

Step 6: If choice is postorder then

a) Traverse the left subtree in postorder.

b) Traverse the right subtree in postorder.

c) Process the root node.

Step7: Print the Inorder / Preorder / Postorder traversal.

Step 8: Stop the process.

IMPLEMENTATION OF BINARY SEARCH TREE.

AIM:-

To implement insertion in binary search tree using linked list.

ALGORITHM:-

1: Start the process.

2: Initialize and declare variables.

3: Enter the choice. Insert or Delete
4: If choice is Insert then

If the Root is NULL

Insert the value in Root

Else

If the value is less than the root’s value then

Insert the value in left node of the Root, if it is NULL else

Insert the value in left sub tree by passing the value as root value.

else

Insert the value in right node of the Root, if it is NULL else

Insert the value in right sub tree by passing the value as root value.

IMPLEMENTATION OF AVL TREE.

AIM:-

To implement insertion in AVL tree using linked list.

ALGORITHM:-

1. Initialize and declare variables.

2. Check if the new key will go left or right.

3. Insert it recursively in left or right subtree as needed.

4. If it will not result in any increase of the subtree height, do nothing

5. If it increases the height of the shorter subtree, still do

nothing except update the BF of the root.

6. If it increases the height of the taller subtree then

If the right subtree height has grown one and the

right subtree was already taller then

a. If the right subtree itself is now left heavy then

Perform Left Rotation

b. If the right subtree itself is now right heavy then

Perform Double left Rotation

If the Left subtree height has grown one and the

left subtree was already taller then

a. If the Left subtree itself is now right heavy then

Perform Right Rotation

b. If the Left subtree itself is now right heavy then

Perform Double right Rotation

 IMPLEMENTATION OF PRIORITY QUEUE USING HEAPS
AIM:-

To implement priority queue (Maximum Heap) using heaps.

ALGORITHM:-

function heapSort(a, count) is
 input: an unordered array a of length count
 (first place a in max-heap order)
 heapify(a, count)

 end := count - 1

 while end > 0 do
 (swap the root(maximum value) of the heap with the last element of the heap)
 swap(a[end], a[0])

 (decrease the size of the heap by one so that the previous max value will
 stay in its proper placement)
 end := end - 1

 (put the heap back in max-heap order)
 siftDown(a, 0, end)

 function heapify(a,count) is
 (start is assigned the index in a of the last parent node)
 start := (count - 2) / 2

 while start ≥ 0 do
 (sift down the node at index start to the proper place such that all nodes below
 the start index are in heap order)
 siftDown(a, start, count-1)

 start := start - 1

 (after sifting down the root all nodes/elements are in heap order)
 function siftDown(a, start, end) is
 input: end represents the limit of how far down the heap
 to sift.
 root := start

 while root * 2 + 1 ≤ end do (While the root has at least one child)
 child := root * 2 + 1 (root*2+1 points to the left child)
 (If the child has a sibling and the child's value is less than its sibling's...)
 if child + 1 ≤ end and a[child] < a[child + 1] then
 child := child + 1 (... then point to the right child instead)
 if a[root] < a[child] then (out of max-heap order)
 swap(a[root], a[child])

 root := child (repeat to continue sifting down the child now)
 else
 return
 IMPLEMENT HASHING WITH OPEN ADDRESSING

Aim:

To implement hashing and apply the open addressing technique to avoid collision.

Algorithm:

1. Initialize and declare variables.

2. Get the key value to store.

3. Pass the key value as a parameter to Hash function and get the index of the bucket.

4. If there is an empty place ,the value is stored.

5. else the buckets are scanned in the same sequence, until either the target record is found, or an unused array slot is found.
IMPLEMENTATION OF PRIM'S ALGORITHM
AIM:-

To implement prim’s algorithm.
ALGORITHM:-

Prim’s Algorithm:

E(1) is the set of the sides of the minimum genetic tree.
E(2) is the set of the remaining sides.

 E(1)=0,E(2)=E

 While E(1) contains less then n-1 sides and E(2)=0 do

· From the sides of E(2) choose one with minimum cost-->e(ij)

· E(2)=E(2)-{e(ij) }

· If V(i),V(j) do not belong in the same tree then

· unite the trees of V(i) and V(j) to one tree.

· end (If)

· end (While)

 End Of Algorithm.

 IMPLEMENTATION OF DIJKSTRA'S ALGORITHM USING PRIORITY QUEUES
AIM:-

To implement Dijkstra's algorithm using priority queues.

ALGORITHM:-
1. Assign to every node a distance value. Set it to zero for our initial node and to infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For current node, consider all its unvisited neighbours and calculate their distance (from the initial node). For example, if current node (A) has distance of 6, and an edge connecting it with another node (B) is 2, the distance to B through A will be 6+2=8. If this distance is less than the previously recorded distance (infinity in the beginning, zero for the initial node), overwrite the distance.

4. When we are done considering all neighbours of the current node, mark it as visited. A visited node will not be checked ever again; its distance recorded now is final and minimal.

5. Set the unvisited node with the smallest distance (from the initial node) as the next "current node" and continue from step 3 .
1 function Dijkstra(Graph, source):

 2 for each vertex v in Graph: // Initializations
 3 dist[v] := infinity // Unknown distance function from source to v
 4 previous[v] := undefined // Previous node in optimal path from source
 5 dist[source] := 0 // Distance from source to source
 6 Q := the set of all nodes in Graph
 // All nodes in the graph are unoptimized - thus are in Q
 7 while Q is not empty: // The main loop
 8 u := vertex in Q with smallest dist[]

 9 if dist[u] = infinity:

10 break // all remaining vertices are inaccessible
11 remove u from Q

12 for each neighbor v of u: // where v has not yet been removed from Q.
13 alt := dist[u] + dist_between(u, v)

14 if alt < dist[v]: // Relax (u,v,a)
15 dist[v] := alt
16 previous[v] := u
17 return previous[]

 IMPLEMENTATION OF TOPOLOGICAL SORT ON A DIRECTED GRAPH TO DECIDE IF IT IS ACYCLIC
AIM:-

To perform topological sort on a directed graph to decide if it is acyclic.

ALGORITHM:-

L ← Empty list that will contain the sorted elements

S ← Set of all nodes with no incoming edges

while S is non-empty do
 remove a node n from S

 insert n into L

 for each node m with an edge e from n to m do
 remove edge e from the graph

 if m has no other incoming edges then
 insert m into S

if graph has edges then
 output error message (graph has at least one cycle)

else

 output message (proposed topologically sorted order: L)

